1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vanyuwa [196]
3 years ago
9

The Empirical Rule The following data represent the length of eruption for a random sample of eruptions at the Old Faithful geys

er in Calistoga, California.108 108 99 105 103 103 94102 99 106 90 104 110 110103 109 109 111 101 101
110 102 105 110 106 104
104 100 103 102 120 90
113 116 95 105 103 101
100 101 107 110 92 108(a) Determine the sample standard deviation length of eruption.Express your answer rounded to the nearest whole number.(b) On the basis of the histogram drawn in Section 3.1, Problem 28, comment on the appropriateness of using the Empirical Rule to make any general statements about the length of eruptions.(c) Use the Empirical Rule to determine the percentage of eruptions that last between 92 and 116 seconds.(d) Determine the actual percentage of eruptions that last between 92 and 116 seconds, inclusive.(e) Use the Empirical Rule to determine the percentage of eruptions that last less than 98 seconds.(f) Determine the actual percentage of eruptions that last less than 98 seconds.
Mathematics
1 answer:
ad-work [718]3 years ago
4 0

Answer:

(a) Sample Standard Deviation approximately to the nearest whole number = 6

(b) The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is.

(c) The percentage of eruptions that last between 92 and 116 seconds using the empirical rule is 95%

(d) The actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) The percentage of eruptions that last less than 98 seconds using the empirical rule is 16%

(f) The actual percentage of eruptions that last less than 98 seconds is 15.866%

Step-by-step explanation:

(a) Determine the sample standard deviation length of eruption.

Express your answer rounded to the nearest whole number.

Step 1

We find the Mean.

Mean = Sum of Terms/Number of Terms

= 90+ 90+ 92+94+ 95+99+99+100+100, 101+ 101+ 101+101+ 102+102+ 102+103+103+ 103+103+103+ 104+ 104+104+105+105+105+ 106+106+107+108+108+108 + 109+ 109+ 110+ 110+110+110+ 110+ 111+ 113+ 116+120/44

= 4582/44

= 104.1363636

Step 2

Sample Standard deviation = √(x - Mean)²/n - 1

=√( 90 - 104.1363636)²+ (90-104.1363636)² + (92 -104.1363636)² ..........)/44 - 1

= √(199.836777 + 199.836777 + 147.2913224+ 102.7458678+ 83.47314049+ 26.3822314+ 26.3822314+ 17.10950413+17.10950413+ 9.836776857+ 9.836776857, 9.836776857+9.836776857+ 4.564049585+ 4.564049585+ 4.564049585+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 1.291322313+ 0.01859504133+ 0.01859504133+ 0.01859504133+ 0.7458677685+ 0.7458677685+ 0.7458677685+ 3.473140497+ 3.473140497+ 8.200413225+ 14.92768595+ 14.92768595+ 14.92768595+ 23.65495868+ 23.65495868+ 34.38223141+ 34.38223141+34.38223141+ 34.38223141+ 34.38223141+47.10950414+ 78.56404959+ 140.7458677+ 251.6549586) /43

= √1679.181818/43

= √39.05073996

= 6.249059126

Approximately to the nearest whole number:

Mean = 104

Standard deviation = 6

(b) On the basis of the histogram drawn in Section 3.1, Problem 28, comment on the appropriateness of using the Empirical Rule to make any general statements about the length of eruptions.

The use of Empirical Rule to make any general statements about the length of eruptions is empirical rules tell us about how normal a distribution and gives us an idea of what the final outcome about the length of eruptions is .

(c) Use the Empirical Rule to determine the percentage of eruptions that last between 92 and 116 seconds.

The empirical rule formula states that:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

Mean = 104, Standard deviation = 6

For 68% μ - σ = 104 - 6 = 98, μ + σ = 104 + 6 = 110

For 95% μ – 2σ = 104 -2(6) = 104 - 12 = 92

μ + 2σ = 104 +2(6) = 104 + 12 = 116

Therefore, the percentage of eruptions that last between 92 and 116 seconds is 95%

(d) Determine the actual percentage of eruptions that last between 92 and 116 seconds, inclusive.

We solve for this using z score formula

The formula for calculating a z-score is is z = (x-μ)/σ

where x is the raw score, μ is the population mean, and σ is the population standard deviation.

Mean = 104, Standard deviation = 6

For x = 92

z = 92 - 104/6

= -2

Probability value from Z-Table:

P(x = 92) = P(z = -2) = 0.02275

For x = 116

z = 92 - 116/6

= 2

Probability value from Z-Table:

P(x = 116) = P(z = 2) = 0.97725

The actual percentage of eruptions that last between 92 and 116 seconds

= P(x = 116) - P(x = 92)

= 0.97725 - 0.02275

= 0.9545

Converting to percentage = 0.9545 × 100

= 95.45%

Therefore, the actual percentage of eruptions that last between 92 and 116 seconds, inclusive is 95.45%

(e) Use the Empirical Rule to determine the percentage of eruptions that last less than 98 seconds

The empirical rule formula:

1) 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ .

2) 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ .

3)99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ

For 68% μ - σ = 104 - 6 = 98,

Therefore, 68% of eruptions that last for 98 seconds.

For less than 98 seconds which is the Left hand side of the distribution, it is calculated as

= 100 - 68/2

= 32/2

= 16%

Therefore, the percentage of eruptions that last less than 98 seconds is 16%

(f) Determine the actual percentage of eruptions that last less than 98 seconds.

The formula for calculating a z-score is z = (x-μ)/σ, where x is the raw score, μ is the population mean, and σ is the population standard deviation.

For x = 98

Z score = x - μ/σ

= 98 - 104/6

= -1

Probability value from Z-Table:

P(x ≤ 98) = P(x < 98) = 0.15866

Converting to percentage =

0.15866 × 100

= 15.866%

Therefore, the actual percentage of eruptions that last less than 98 seconds is 15.866%

You might be interested in
Mary ran 2 miles in about 23 minutes. If she continued at the same pace, how long will it take her to run 10 miles?
ZanzabumX [31]

Answer:115 minutes

Step-by-step explanation:

Set you problem 2/23 = 10/x

X represents the number of minutes you are trying to figure out. Cross multiply to get 2x=230. Decide both sides by 2 to get x=115

8 0
4 years ago
Please help and fast!!!!<br><br> ( i accidently clicked an answer)
STatiana [176]

Answer:

theres nothing there

Step-by-step explanation:

5 0
3 years ago
Use the given graph to determine the limit, if it exists. A coordinate graph is shown with a horizontal line crossing the y axis
Lesechka [4]

Answer:

The limit of the function does not exists.

Step-by-step explanation:

From the graph it is noticed that the value of the function is 6 from all values of x which are less than 2. At x=2, the line y=6 has open circle. It means x=2 is not included.

For x<2

f(x)=6

The value of the function is -3 from all values of x which are greater than 2. At x=2, the line y=-3 has open circle. It means x=2 is not included.

For x>2

f(x)=-3

The value of y is 1 at x=2, because of he close circles on (2,1).

For x=2

f(x)=1

Therefore the graph represents a piecewise function, which is defined as

f(x)=\begin{cases}6& \text{ if } x2 \end{cases}

The limit of a function exist at a point a if the left hand limit and right hand limit are equal.

lim_{x\rightarrow a^-}f(x)=lim_{x\rightarrow a^+}f(x)

The function is broken at x=2, therefore we have to find the left and right hand limit at x=2.

lim_{x\rightarrow 2^-}f(x)=6

lim_{x\rightarrow 2^+}f(x)=-3

6\neq-3

Since the left hand limit and right hand limit are not equal therefore the limit of the function does not exists.

6 0
3 years ago
Read 2 more answers
You can park no further than how many feet away from the curb
ivolga24 [154]
The answer is 18 inches.
6 0
3 years ago
Which of the following is a possible situation for the graph shown?
docker41 [41]

Step-by-step explanation:

but the graph is not given here

4 0
2 years ago
Other questions:
  • Here Is My Last Question I Took A Snip Of 30 Points
    8·1 answer
  • A baseball team has home games on thursdaythursday and saturdaysaturday. the two games together earn ​$4285.004285.00 for the te
    13·1 answer
  • A company makes greeting cards and their research shows that that price and demand are related linearly: p=mx +b.They know that
    8·1 answer
  • What is 9 squared plus x squared = 90
    12·1 answer
  • Find the value of p and the value of q
    15·1 answer
  • Caio comprou uma lembrancinha para todos os seus amigos e gastou R$12,50. Qual fração pode representar esse valor? 125/2 25/5 12
    8·1 answer
  • Yall i really need help plz its due today
    14·1 answer
  • NEED ANSWERS ASAP!!( no need for explanation just final answers)
    8·2 answers
  • Jon teaches a fourth grade class at an elementary school where class sizes are always at least 20 students and at most 28. One d
    7·2 answers
  • How many faces, edges and vertices does the shape below have?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!