B. slows down is your answer, obviously as it approaches carrying capacity, there would be less available space to find in the place of inhabitance, so less and less population units would be able to find the place of inhabitance suitable for living, or can't find enough space to live in.
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Answer:
VH2SO4 = 145.3 mL
Explanation:
Mw BaO2 = 169.33 g/mol
⇒ mol BaO2 = 53.5g * ( mol BaO2 / 169.33 g BaO2) = 0.545 mol BaO2
⇒according to the reaction:
mol BaO2 = mol H2SO4 = 0.545 mol
⇒ V H2SO4 = 0.545 mol H2SO4 * ( L H2SO4 / 3.75 mol H2SO4 )
⇒V H2SO4 = 0.1453 L (145.3 mL)
The answer is 8 :)
All nobel gases have 8 outer electrons.
Using the Rydberg formula, the spectral line of H - atom is suitable for this purpose is Paschen, ∞ → 3.
- Using the Rydberg formula;
1/λ = RH(1/nf^2 - 1/ni^2)
Given that;
λ = wavelength
RH = Rydberg constant
nf = final state
ni = initial state
- When final state = 3 and initial state = ∞
Then;
1/λ = 1 × 10^7 m-1 (1/3^2 - 1/ ∞^2)
1/λ = 1 × 10^7 m-1 (1/3^2 )
λ = 900 nm
Hence, the correct answer is Paschen, ∞ → 3
Learn more about the Rydberg formula; brainly.com/question/17753747