Answer:
0.479 M or mol/L
Explanation:
So Molarity is moles/litres of solution...often written as M=mol/L
So here we are given grams of BaCl2 which we have to convert to moles. To convert to moles of BaCl2 we have to divide 63.2 g BaCl2 by molar mass of BaCl2 which is 208.23 g/mol so you get 63.2/208.23 = 0.3035 moles of BaCl2
Second step is converting the 634mL to litres by simply dividing by 1000 because we know 1 litre has 1000ml so 634/1000 = 0.634L
Now we just plug these guys in our molarity formula M=mol/L
M= 0.3035/0.634 = 0.479 M or mol/L
Answer:
c. iron I hope it helped.....
The energy released from 1 gram of uranium is more than 1 million times greater than the energy released from 3 grams of coal is True.
<u>Explanation:</u>
Nuclear Fission is the process in which splitting of a nucleus takes place that releases free neutrons and lighter nuclei. The fission of heavy elements like "Uranium is highly exothermic" and releases "200 million eV" compared to the energy that is released by burning coal which gives a few eV.
In the given example, it is obvious that the energy released from 1 gram of uranium is more than that of the energy released from 3 grams of coal because the amount of energy released during nuclear fission is millions of times more efficient per mass than that of coal considering only
part of the original nuclei is converted to energy.
Answer:
Therefore, the rate of change in the amount of salt is 

Explanation:
Given:
Initial volume of water
lit
Flowing rate = 5 
The rate of change in the amount of salt is given by,
( Rate of salt enters tank - rate of sat leaves tank )
Since tank is initially filled with water so we write that,

Let amount of salt in the solution is
,


Therefore, the rate of change in the amount of salt is 

The answer is D, medical diagnosis