A^-b is the same as 1/a^b.
When there is a negative power, place the number and power over 1.
a^b/a^c = a^(b-c).
c is a negative power, because it is being divided, and is underneath b, which is a positive (and so it stays in the numerator).
a^c/b^c = (a/b)^c
Inside this one, the power of c is distributed to all numbers inside the parenthesis, in this case a and b.
hope this helps
-- The difference of 2 logs is the log of the quotient of their arguments.
log(11) - log(6) = log(11/6)
-- 1/3 of the log of something is the log of its cube root.
1/3 log(8) = log(∛8) = log(2)
and
1/3 log(729) = log(∛729) = log(9)
-- If a bunch of logs all have the same base, then their sum
is the log of the product of the arguments. So ...
log(11) - log(6) + 1/3 log(8) + 1/3 log(729) =
log(11/6 times 2 times 9) =
log( 11*18 / 6 ) = <em>log(33)</em>
log(33) = about <em>1.519</em> (rounded)
============================================
The other way:
log(11) = 1.0414
-log(6) = -0.7782
log(8) = 0.9031
1/3(0.9031) = 0.3010
log(729) = 2.8627
1/3(2.8627) = 0.9542
-----------
Adum up: <em>1.5184</em>
(Note: Everything is rounded.)
Answer:
h(f(x)) = x
Step-by-step explanation:
Since the functions are inverses h(x) undoes f(x)
That is if f(x) = x then inverse function maps back to x
h(f(x)) = x
Answer:
It's D.
Step-by-step explanation:
To find what decimal number a fraction is equal to, just divide the numerator (top number) by the denominator (bottom number).
Answer:
below.
Step-by-step explanation:
f(6) = 0 because (x - 6) ---> (6 - 6) = 0