R=10+15+30
55 is the answer to the question
Answer:

Explanation:
According to Coulomb's law, the force of attraction between two point charges,
and
, separated by a distance
is given by

is a constant with a value of
.
When we substitute the values from the question,

This value is negative because it is in a direction towards the positive charge.
The work done in moving the electron from the nucleus is


This is negative because work is done on the electron, not by it.
D) Ride comfort, i<span>t won't let me answer unless there are 20 characters so I added this pointless sentence.</span>
Answer:
The size of the force developing inside the steel rod is 32039.28 N
Explanation:
Given;
length of the steel rod, L = 1.55 m
cross sectional area of the steel, A = 4.89 cm²
temperature change, ∆T = 28.0 K
coefficient of linear expansion for steel, α = 1.17 × 10⁻⁵ 1/K
Young modulus of steel, E = 200.0 GPa.
Extension of the steel is given as;
α ∆T L = FL / AE
α ∆T = F/AE
F = AEα ∆T
F = ( 4.89 x 10⁻⁴)(200 x 10⁹)(1.17 × 10⁻⁵)(28.0 K)
F = 32039.28 N
Therefore, the size of the force developing inside the steel rod when its temperature is raised, is 32039.28 N
The location of the point F that partitions a line segment from D to E (
), that goes from <u>negative 4</u> to <u>positive 5,</u> into a 5:6 ratio is fifteen halves (option 4).
We need to calculate the segment of the line DE to find the location of point F.
Since point D is located at <u>negative -4</u> and point E is at <u>positive 5</u>, we have:

Hence, the segment of the line DE (
) is 9.
Knowing that point F partitions the line segment from D to E (
) into a <u>5:6 ratio</u>, its location would be:
Therefore, the location of point F is fifteen halves (option 4).
Learn more about segments here:
I hope it helps you!