Answer:
1.1215 h
Explanation:
Δt=Δt_o/√(1-u^2/c^2)
(Δt° is the proper time in the rest frame,
Δt is the time intent measured in the second frame of reference u is the speed of the second frame with respect to the rest frame c is the speed of light )
a) the proper time is the time on spacecraft (rest frame);
Δt = 365 days = 8760 h
Δt=Δt_o/√(1-u^2/c^2)= 8761.1215 h
the difference = 8761.1215 h — 8760 h = 1.1215 h
Answer:
A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment. Such fact-supported theories are not "guesses" but reliable accounts of the real world.
Question 1.
- mass = 4500 kg
- potential energy (p.e) = 67500 J
now, we know :
=》

=》

=》

=》

=》

note : if we take acceleration due to gravity as 9.8, then height = 1.53 m
Question 2.
- mass = 4500 kg
- kinetic energy = 63000 j
we know,
=》

=》

=》

=》

=》

=》

or
=》

Transverse Waves: Displacement of the medium is perpendicular to the direction of propagation of the wave. ... Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.
Answer:
66.375 x 10⁻⁶ C/m
Explanation:
Using Gauss's law which states that the net electric flux (∅) through a closed surface is the ratio of the enclosed charge (Q) to the permittivity (ε₀) of the medium. This can be represented as
;
∅ = Q / ε₀ -----------------(i)
Where;
∅ = 7.5 x 10⁵ Nm²/C
ε₀ = permittivity of free space (which is air, since it is enclosed in a bag) = 8.85 x 10⁻¹² Nm²/C²
Now, let's first get the charge (Q) by substituting the values above into equation (i) as follows;
7.5 x 10⁵ = Q / (8.85 x 10⁻¹²)
Solve for Q;
Q = 7.5 x 10⁵ x 8.85 x 10⁻¹²
Q = 66.375 x 10⁻⁷ C
Now, we can find the linear charge density (L) which is the ratio of the charge(Q) to the length (l) of the rod. i.e
L = Q / l ----------------------(ii)
Where;
Q = 66.375 x 10⁻⁷ C
l = length of the rod = 10.0cm = 0.1m
Substitute these values into equation (ii) as follows;
L = 66.375 x 10⁻⁷C / 0.1m
L = 66.375 x 10⁻⁶ C/m
Therefore, the linear charge density (charge per unit length) on the rod is 66.375 x 10⁻⁶ C/m.