Answer:
The natural frequency will be 228.11 rad/sec
Explanation:
We have given Inductance L = 0.048 Henry
And the capacitance C = 0.0004 farad
We have to find natural frequency
When only inductor and capacitor is present in the circuit then it is known as LC circuit and Natural frequency of LC circuit is given by 
So the natural frequency will be 228.21
Answer:
The smallest possibility is 0.01E-22kgm/s
Explanation:
Using
Momentum= h/4πx
= 6.6x 10^-34Js/ 4(3.142* 50*10-12m)
= 0.01*10^-22kgm/s
Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,

Now, we will apply the law of conservation of momentum:

where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,

Now, we again use the third equation of motion for the upward motion of the ball:

where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,

<u>h = 3.5 m</u>
Answer:
The answer <em><u>is C. Mars</u></em>. Mars and Mercury are both smaller than Earth's core. Hope this helps you :)