Answer:
It means goes up by twos for example 2,4,6,8 all those numbers increase by 2s.
Step-by-step explanation:
Hello,
1. Since Angle C has the longest side for this triangle, it will have the largest degree value.
2. Use the Law of Cosines and inverse properties of “theta” to solve for Angle C. (Ensure that the calculator used is in “degree mode”, not “radian mode”.
c^2 = a^2 + b^2 - 2(a)(b)(cos (C))
15^2 = 11^2 + 14^2 - 2(11)(14)(cos(C))
225 - 317 = -2(11)(14)(cos(C))
-92 / -2(11)(14) = cos(C)
cos(C) becomes ->> cos^-1[92 /-2(11)(14)] = 72.62° ->> to the nearest degree is 73°
The answer for angle C, 73°, is logical because the triangle in the picture represents a 60-60-60 triangle, known as an equilateral triangle.
Good luck to you!
Answer:
- <u><em>A dilation by a scale factor of 4 and then a reflection across the x-axis </em></u>
Explanation:
<u>1. Vertices of triangle FGH:</u>
- F: (-2,1)
- G: (-3,3)
- H: (0,1)
<u>2. Vertices of triangle F'G'H':</u>
- F': (-8,-4)
- G': (-12,-12)
- H': (0, -4)
<u>3. Solution:</u>
Look at the coordinates of the point H and H': to transform (0,1) to (0,-4) you can muliply each coordinate by 4 and then change the y-coordinate from 4 to -4. That is<em> a dilation by a scale factor of 4 and a reflection across the x-axis.</em> This is the proof:
- Rule for a dilation by a scale factor of 4: (x,y) → 4(x,y)
(0,1) → 4(0,1) = (0,4)
- Rule for a reflection across the x-axis:{ (x,y) → (x, -y)
(0,4) → (0,-4)
Verfiy the transformations of the other vertices with the same rule:
- Dilation by a scale factor of 4: multiply each coordinate by 4
4(-2,1) → (-8,4)
4(-3,3) → (-12,12)
- Relfection across the x-axis: keep the x-coordinate and negate the y-coordinate
(-8,4) → (-8,-4) ⇒ F'
(-12,12) → (-12,-12) ⇒ G'
Therefore, the three points follow the rules for <em>a dilation by a scale factor of 4 and then a reflection across the x-axis.</em>