Answer
x = 1
Explanation:
Given the following equation
![\begin{gathered} (2x+2)^{\frac{1}{2}}=\text{ -2} \\ \text{According to the law of indicies} \\ x^{\frac{1}{2}}\text{ = }\sqrt[]{x} \\ (2x+2)^{\frac{1}{2}}\text{ = }\sqrt[]{(2x\text{ + 2)}} \\ \text{Step 1: Take the square of both sides} \\ \sqrt[]{(2x\text{ + 2) }}\text{ = -2} \\ \sqrt[]{(2x+2)^2}=-2^2 \\ 2x\text{ + 2 = 4} \\ \text{Collect the like terms} \\ 2x\text{ = 4 - 2} \\ 2x\text{ = 2} \\ \text{Divide both sides by 2} \\ \frac{2x}{2}\text{ = }\frac{2}{2} \\ x\text{ = 1} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%282x%2B2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Ctext%7B%20-2%7D%20%5C%5C%20%5Ctext%7BAccording%20to%20the%20law%20of%20indicies%7D%20%5C%5C%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7Bx%7D%20%5C%5C%20%282x%2B2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B%282x%5Ctext%7B%20%2B%202%29%7D%7D%20%5C%5C%20%5Ctext%7BStep%201%3A%20Take%20the%20square%20of%20both%20sides%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%282x%5Ctext%7B%20%2B%202%29%20%7D%7D%5Ctext%7B%20%3D%20-2%7D%20%5C%5C%20%5Csqrt%5B%5D%7B%282x%2B2%29%5E2%7D%3D-2%5E2%20%5C%5C%202x%5Ctext%7B%20%2B%202%20%3D%204%7D%20%5C%5C%20%5Ctext%7BCollect%20the%20like%20terms%7D%20%5C%5C%202x%5Ctext%7B%20%3D%204%20-%202%7D%20%5C%5C%202x%5Ctext%7B%20%3D%202%7D%20%5C%5C%20%5Ctext%7BDivide%20both%20sides%20by%202%7D%20%5C%5C%20%5Cfrac%7B2x%7D%7B2%7D%5Ctext%7B%20%3D%20%7D%5Cfrac%7B2%7D%7B2%7D%20%5C%5C%20x%5Ctext%7B%20%3D%201%7D%20%5Cend%7Bgathered%7D)
Therefore, x = 1
F(x) = sin x
f(180/4) = f(45) = sin (45)
then , f(180/4) = 1/root(2)
Answer:
A. the proper steps that should have been taking would be to first would be to raise 2 to the power of 3, which would give you 8. Then raise it to the power of 1. So the most likely error is C. they added the exponents.
Answer:
Angle 1: 115
Angle 2: 65
Angle 3: 115
Angle 4: 65
Angle 5: 115
Angle 6: 65
Angle 7: 115
Step-by-step explanation:
Find the value of angle 2 by applying the vertical angles theorem (65)
Find the value of angle 1 by applying the supplementary angles theorem from the original angle (180 - 65 = 115)
Find the value of angle 3 by applying the vertical angles theorem from angle 1 (115)
Angles 4, 5, 6, and 7 are on a line parallel to the orginal line, cut by the same transversal, so they have the same values, according to the same side interior/exterior angles theorems.
Answer:c
Step-by-step explanation: