Answer:
36:)
Step-by-step explanation:
<u>The present age of the man is 36 years and his son is 11 years.</u>
Answer:
Solution given:
let the age of man be x.
and his son be y.
By question
x-6=6(y-6)
x=6y-36+6
x=6y-30. ......(1)
and
3(x+4)=8(y+4)
3x+12=8y+32
3x=8y+32-12
3x=8y+20. ...(2)
substituting value of x in equation 2 ,we get
3(6y-30)=8y+20
18y-90=8y+20
18y-8y=90+20
10y=110
y=110/10
y=11 years
again substituting value of y in equation 1 we get
x=6*11-30
x=66-30
x=36 years
The student will have $135 in her bank account at the end of the ninth week. You can fine this out by finding out the amount she deposits a week and to do this you would take the $30 and divide it by 2 because she had $30 at the end of the second week.
30/2=15
So you see that the student deposits $15 each week, so to find out how much money she will have in 9 weeks you will multiply her $15 by 9.
15x9=135
So the student will have $135 at the end of the ninth week.
Answer:
The error she made was that she was adding x and 2.75. She should subtract 2.75 from x.
Another mistake that she made was that she sold each for $7 assuming that she would make a profit of 78, but she should see each necklace for $12.5 so that she could make a profit of $78.
Step-by-step explanation:
The error she made was that she was adding x and 2.75.
She should write the equation as 8 (x - 2.75) = 78; as she spends $2.75 to make a necklace.
By using the correct equation: 8 (x - 2.75) = 78
=> 8x - 22 = 78
=> 8x = 78 + 22
=> 8x = 100
=> x = 100/8
=> x = 12.5
Another mistake that she made was that she sold each for $7 assuming that she would make a profit of 78, but she should see each necklace for $12.5 so that she could make a profit of $78.
Hope this helps you.
<span><span>
The correct answers are:</span><span>
(1) The vertical asymptote is x = 0
(2) The horizontal asymptote is y = 0
</span><span>
Explanation:</span><span>(1) To find the vertical asymptote, put the denominator of the rational function equals to zero.
Rational Function = g(x) = </span></span>

<span>
Denominator = x = 0
Hence the vertical asymptote is x = 0.
(2) To find the horizontal asymptote, check the power of x in numerator against the power of x in denominator as follows:
Given function = g(x) = </span>

<span>
We can write it as:
g(x) = </span>

<span>
If power of x in numerator is less than the power of x in denomenator, then the horizontal asymptote will be y=0.
If power of x in numerator is equal to the power of x in denomenator, then the horizontal asymptote will be y=(co-efficient in numerator)/(co-efficient in denomenator).
If power of x in numerator is greater than the power of x in denomenator, then there will be no horizontal asymptote.
In above case, 0 < 1, therefore, the horizontal asymptote is y = 0
</span>