Undefined
Rise/ run = slope
1 rise / 0 run = 1/0 which is undefined
so, let's keep in mind that

so let's make a quick table of those solutions, say A, B, C solutions with x,y,z liters of acid, with an acidity of 0.25, 0.40 and 0.60 respectively.

we know she's using "z" liters and those are 3 times as much as "y" liters, so z = 3y.
![\bf \begin{cases} x+y+3y=78\\ x+4y=78\\[-0.5em] \hrulefill\\ 0.25x+0.4y+0.6(3y)=35.1\\ 0.25x+0.4y=1.8y=35.1\\ 0.25x+2.2y=35.1 \end{cases}\implies \begin{cases} x+4y=78\\\\ 0.25x+2.2y=35.1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ x+4y=78\implies \boxed{x}=78-4y \\\\\\ \stackrel{\textit{using substitution on the 2nd equation}}{0.25\left( \boxed{78-4y} \right)+2.2y=35.1}\implies 19.5-y+2.2y=35.1](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%2By%2B3y%3D78%5C%5C%20x%2B4y%3D78%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%200.25x%2B0.4y%2B0.6%283y%29%3D35.1%5C%5C%200.25x%2B0.4y%3D1.8y%3D35.1%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20x%2B4y%3D78%5C%5C%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20x%2B4y%3D78%5Cimplies%20%5Cboxed%7Bx%7D%3D78-4y%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20substitution%20on%20the%202nd%20equation%7D%7D%7B0.25%5Cleft%28%20%5Cboxed%7B78-4y%7D%20%5Cright%29%2B2.2y%3D35.1%7D%5Cimplies%2019.5-y%2B2.2y%3D35.1)
![\bf 1.2y=15.6\implies y=\cfrac{15.6}{1.2}\implies \blacktriangleright y=13 \blacktriangleleft \\\\\\ x=78-4y\implies x=78-4(13)\implies \blacktriangleright x=26 \blacktriangleleft \\\\\\ z=3y\implies z=3(13)\implies \blacktriangleright z=39 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{25\%}{26}\qquad \stackrel{40\%}{13}\qquad \stackrel{60\%}{39}~\hfill](https://tex.z-dn.net/?f=%5Cbf%201.2y%3D15.6%5Cimplies%20y%3D%5Ccfrac%7B15.6%7D%7B1.2%7D%5Cimplies%20%5Cblacktriangleright%20y%3D13%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20x%3D78-4y%5Cimplies%20x%3D78-4%2813%29%5Cimplies%20%5Cblacktriangleright%20x%3D26%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20z%3D3y%5Cimplies%20z%3D3%2813%29%5Cimplies%20%5Cblacktriangleright%20z%3D39%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B25%5C%25%7D%7B26%7D%5Cqquad%20%5Cstackrel%7B40%5C%25%7D%7B13%7D%5Cqquad%20%5Cstackrel%7B60%5C%25%7D%7B39%7D~%5Chfill)
Answer:
Now we can calculate the p value based on the alternative hypothesis with this probability:
The p value is very low compared to the significance level of
then we can reject the null hypothesis and we can conclude that the true proportion of people liberal is higher than 0.24
Step-by-step explanation:
Information given
n=200 represent the random sample taken
X=75 represent the number of people Liberal
estimated proportion of people liberal
is the value that we want to test
z would represent the statistic
represent the p value
Hypothesis to test
We want to verify if the true proportion of adults liberal is higher than 0.24:
Null hypothesis:
Alternative hypothesis:
The statistic is given by:
(1)
Replacing the info given we got:
Now we can calculate the p value based on the alternative hypothesis with this probability:
The p value is very low compared to the significance level of
then we can reject the null hypothesis and we can conclude that the true proportion of people liberal is higher than 0.24
The slope would be -5 over 7