Answer: The simplified expression is: "
" .
______________________________
Step-by-step explanation:
______________________________
Given the expression:
______________________________
" One-half (8 x + 4) + one-third (9 minus 3x) " ;
We can rewrite that as:
![(8x+4) + \frac{1}{3}(9-3x)](https://tex.z-dn.net/?f=%288x%2B4%29%20%2B%20%5Cfrac%7B1%7D%7B3%7D%289-3x%29)
Now, let us simplify the expression:
Start with:
;
Note the "distributive property" of multiplication:
a(b + c) = ab + ac ;
Likewise:
; '
Now continue with the remaining part of the expression:
;
Again, use the "distributive property" of multiplication:
a(b + c) = ab + ac ;
![+\frac{1}{3}(9-3x)= (\frac{1}{3})9+(\frac{1}{3})(-3x)=\frac{9}{3}+(-\frac{3}{3}x)=3+(-1x);](https://tex.z-dn.net/?f=%2B%5Cfrac%7B1%7D%7B3%7D%289-3x%29%3D%20%28%5Cfrac%7B1%7D%7B3%7D%299%2B%28%5Cfrac%7B1%7D%7B3%7D%29%28-3x%29%3D%5Cfrac%7B9%7D%7B3%7D%2B%28-%5Cfrac%7B3%7D%7B3%7Dx%29%3D3%2B%28-1x%29%3B)
= 3 − 1x ;
= 3 − x ;
________________________________________
Now, combine both terms within the expression; to simplify the expression:
;
Rewrite as:
;
Now, combine the "like terms":
;
;
The simplified expression is: "
" .
________________________________________
Hope this is helpful to you! Best wishes!
_________________________________________