You can't. Velocity and acceleration measure two different things, so their units are incompatible. It's like asking, "How many meters does this book weigh?"
Maybe you mean "find" acceleration using given velocities, or a velocity function?
Answer:
100 newton
Explanation:
newton third law of motion says to every action there is an always an equal and opposite reaction so the magnitude will stay equal but opposite direction
Answer:
1.86 m
Explanation:
First, find the time it takes to travel the horizontal distance. Given:
Δx = 52 m
v₀ = 26 m/s cos 31.5° ≈ 22.2 m/s
a = 0 m/s²
Find: t
Δx = v₀ t + ½ at²
52 m = (22.2 m/s) t + ½ (0 m/s²) t²
t = 2.35 s
Next, find the vertical displacement. Given:
v₀ = 26 m/s sin 31.5° ≈ 13.6 m/s
a = -9.8 m/s²
t = 2.35 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13.6 m/s) (2.35 s) + ½ (-9.8 m/s²) (2.35 s)²
Δy = 4.91 m
The distance between the ball and the crossbar is:
4.91 m − 3.05 m = 1.86 m
Answer:
50 N
Explanation:
Efficiency of a machine can't be more than 1, so I assume you mean 40%. (Remember, efficiency and mechanical advantage are not the same).
Efficiency is the ratio of work out of a system to the work in to the system.
e = Wout / Win
Work is force times distance, so:
e = (Fout × Dout) / (Fin × Din)
Rearranging:
Fin = (Fout × Dout) / (e × Din)
Fin = (Fout / e) × (Dout / Din)
Fin = (Fout / e) / (Din / Dout)
We know that e = 0.40, and Fout = 120 N. Since there are 6 pulleys, we also know that Din/Dout = 6.
F = (120 N / 0.4) / 6
F = 50 N
Answer:
3054.32618 rad/s²
-431.1989 rad/s²
29080
Explanation:
Converting angular speed to rad/s


The average acceleration while speeding up is 3054.32618 rad/s²
The number of turns in the 1.2 seconds

The number of rotations in the 1.2 seconds is 349.99
Number of rotations in the 45 seconds


Average angular acceleration while slowing down -431.1989 rad/s²

Number of rotations while slowing down is 2479.16718
Total number of rotations is 349.99+26250+2479.16718 = 29079.15718 = 29080