Answer:
34 m/s
Explanation:
Potential energy at top = kinetic energy at bottom + work done by friction
PE = KE + W
mgh = ½ mv² + Fd
mg (d sin θ) = ½ mv² + Fd
Solving for v:
½ mv² = mg (d sin θ) − Fd
mv² = 2mg (d sin θ) − 2Fd
v² = 2g (d sin θ) − 2Fd/m
v = √(2g (d sin θ) − 2Fd/m)
Given g = 9.8 m/s², d = 150 m, θ = 28°, F = 50 N, and m = 65 kg:
v = √(2 (9.8 m/s²) (150 m sin 28°) − 2 (50 N) (150 m) / (65 kg))
v = 33.9 m/s
Rounded to two significant figures, her velocity at the bottom of the hill is 34 m/s.
Two forces F<span>1 and </span>F<span>2 act on the screw eye. The resultant force </span>FR<span> has a magnitude of 125 lb and the coordinate direction angles shown in (Figure 1) . Determine the magnitude of </span>F<span>2. Determine the coordinate direction angle </span>α<span>2 of </span>F<span>2. Determine the coordinate direction angle </span>β<span>2 of </span>F<span>2. Determine the coordinate direction angle </span>γ<span>2 of </span>F<span>2.</span>
Do you speak a little English cuz I can’t help you if a can’t understand you
Hey /人 ◕ ‿‿ ◕ 人\
The answer is transmission
uses a series of gears to transmit power to facilitate changes in speed .
GLAD TO HELP
~~~ ╔͎═͓═͙╗
~~~ ╚̨̈́═̈́﴾ ̥̂˖̫˖̥ ̂ )
I believe the answer would be 7.5 m/s^2