Answer:
<h2>$351.9</h2>
Step-by-step explanation:
the question is not formatted well
<em>A store charges $414 for a small refrigerator, the price consists of the refrigerator's original cost to the store plus a profit 15% what was the refrigerator's original cost to the store?</em>
Step one:
given data
we are told that the price of the small refrigerator contains both the original price and 15% profit
mathematically
$414= original price + 15% profit
Step two:
let us solve for 15% of 414
=(15/100)*414
=0.15*414
=$62.1
This shows that the profit is $62.1
let the original price be x
$414= x + 62.1
solve for x
x=414-62.1
x=351.9
<u>The refrigerator's original cost to the store $351.9</u>
The value of x from the given equation is 5/3
<h3>How to determine the value</h3>
Since the three points are collinear to U, they are on a straight line which equals 0
Then we have,
UM + UD = MD
5x+30 + 10x+20 = 3x+80
Collect like terms
5x + 10x + 50 = 3x + 80
15x - 3x = 80 - 50
12x = 30
x = 30/12 = 15/6 = 5/3
Thus, the value of x from the given equation is 5/3
Learn more about collinear points here:
brainly.com/question/18559402
#SPJ1
Answer:

Step-by-step explanation:
We have:

And we want to find B’(6).
So, we will need to find B(t) first. To do so, we will take the derivative of both sides with respect to x. Hence:
![\displaystyle B^\prime(t)=\frac{d}{dt}[24.6\sin(\frac{\pi t}{10})(8-t)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%28t%29%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B24.6%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%288-t%29%5D)
We can move the constant outside:
![\displaystyle B^\prime(t)=24.6\frac{d}{dt}[\sin(\frac{\pi t}{10})(8-t)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%28t%29%3D24.6%5Cfrac%7Bd%7D%7Bdt%7D%5B%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%288-t%29%5D)
Now, we will utilize the product rule. The product rule is:

We will let:

Then:

(The derivative of u was determined using the chain rule.)
Then it follows that:
![\displaystyle \begin{aligned} B^\prime(t)&=24.6\frac{d}{dt}[\sin(\frac{\pi t}{10})(8-t)] \\ \\ &=24.6[(\frac{\pi}{10}\cos(\frac{\pi t}{10}))(8-t) - \sin(\frac{\pi t}{10})] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20B%5E%5Cprime%28t%29%26%3D24.6%5Cfrac%7Bd%7D%7Bdt%7D%5B%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%288-t%29%5D%20%5C%5C%20%5C%5C%20%26%3D24.6%5B%28%5Cfrac%7B%5Cpi%7D%7B10%7D%5Ccos%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%29%288-t%29%20-%20%5Csin%28%5Cfrac%7B%5Cpi%20t%7D%7B10%7D%29%5D%20%5Cend%7Baligned%7D)
Therefore:
![\displaystyle B^\prime(6) =24.6[(\frac{\pi}{10}\cos(\frac{\pi (6)}{10}))(8-(6))- \sin(\frac{\pi (6)}{10})]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%286%29%20%3D24.6%5B%28%5Cfrac%7B%5Cpi%7D%7B10%7D%5Ccos%28%5Cfrac%7B%5Cpi%20%286%29%7D%7B10%7D%29%29%288-%286%29%29-%20%5Csin%28%5Cfrac%7B%5Cpi%20%286%29%7D%7B10%7D%29%5D)
By simplification:
![\displaystyle B^\prime(6)=24.6 [\frac{\pi}{10}\cos(\frac{3\pi}{5})(2)-\sin(\frac{3\pi}{5})] \approx -28.17](https://tex.z-dn.net/?f=%5Cdisplaystyle%20B%5E%5Cprime%286%29%3D24.6%20%5B%5Cfrac%7B%5Cpi%7D%7B10%7D%5Ccos%28%5Cfrac%7B3%5Cpi%7D%7B5%7D%29%282%29-%5Csin%28%5Cfrac%7B3%5Cpi%7D%7B5%7D%29%5D%20%5Capprox%20-28.17)
So, the slope of the tangent line to the point (6, B(6)) is -28.17.