Answer:
first is 4+4=8.........second is 22×2=11 ..........third is 8÷11=0.7272727273 u can do it 0.72
Step-by-step explanation:
hope this help
<h3>
Answer: f( h(x) ) = 2x - 4</h3>
Work Shown:
f(x) = x - 7
f( h(x) ) = h(x) - 7
f( h(x) ) = 2x+3 - 7
f( h(x) ) = 2x - 4
Explanation:
In the second step, I replaced every x with h(x). In the next step, I replaced the h(x) on the right hand side with 2x+3. From there I combined like terms.
Answer:
We conclude that the area of the right triangle is:

Hence, option A is correct.
Step-by-step explanation:
From the given right-angled triangle,
Using the formula to determine the area of the right-angled triangle
Area of the right triangle A = 1/2 × Base × Perpendicular

Factor 2p-6: 2(p-3)
Divide the number: 2/2 = 1





Therefore, we conclude that the area of the right triangle is:

Hence, option A is correct.
Answer:
x = $0.50
y= $0.75
Step-by-step explanation:
1. Multiply the equations to have the same coefficients
5(6x + 6y = 7.5) → 30x + 30y = 37.5
3(10x + 5y = 8.75) → 30x + 15y = 26.25
2. Subtract the equations
30x + 30y = 37.5
<u>- 30x + 15y = 26.25</u>
15y = 11.25
3. Solve for y by dividing both sides by 15
y = 0.75
4. Plug in 0.75 for y into one of the equations
6x + 6(0.75) = 7.5
5. Simplify
6x + 4.5 = 7.5
6. Solve for x
6x = 3
x = 0.5
Your distance from Seattle after two hours of driving at 62 mph, from a starting point 38 miles east of Seattle, will be (38 + [62 mph][2 hr] ) miles, or 162 miles (east).
Your friend will be (20 + [65 mph][2 hrs] ) miles, or 150 miles south of Seattle.
Comparing 162 miles and 150 miles, we see that you will be further from Seattle than your friend after 2 hours.
After how many hours will you and your friend be the same distance from Seattle? Equate 20 + [65 mph]t to 38 + [62 mph]t and solve the resulting equation for time, t:
20 + [65 mph]t = 38 + [62 mph]t
Subtract [62 mph]t from both sides of this equation, obtaining:
20 + [3 mph]t = 38. Then [3 mph]t = 18, and t = 6 hours.
You and your friend will be the same distance from Seattle (but in different directions) after 6 hours.