Answer:
b) the alpha particles were found to be attracted to the nucleus
Explanation:
Explanation:
Right hand thumb rule : Point the thumb of your right hand in the direction of the current flow, the direction of curvature of the fingers will give us the direction of the magnetic field produced by current carrying wire. This rule was given by Maxwell.
1) If the current is moving in upward direction , the direction of the magnetic field will be in anti clock wise direction.
2) If the current is moving in downward direction , the direction of the magnetic field will be in clock wise direction.
120 volts for most home a phone charger can convert 120 volts ac to 5 volts dc
Answer:
The marble was moving in a projectile and the speed of the engine was 2.716 m/s
Explanation:
The vertical component of the marble's flight path relative to the train
is given by the equation y(t) = v*t - (4.9)*t^2,
where, v is the initial upward velocity of the marble relative to the train.
So with y(1) = v - 4.9 = 0 we have
v = 4.9 m/s.
The marble will reach maximum height after 0.5 seconds, at which the
height will be y(0.5) = (4.9)*(0.5) - (4.9)*(0.5)^2 = (4.9)*(0.25) = 1.225 m.
Now, the marble has a vertical velocity component of 4.9 m/s and a horizontal velocity component
of V m/s such that tan(61) = 4.9 / V
V = 4.9 / tan(61) = 2.716 m/s
This horizontal velocity component of the marble is the same as the
speed of the train i.e. 2.716 m/s.
The refrigerator's coefficient of performance is 6.
The heat extracted from the cold reservoir Q cold (i.e., inside a refrigerator) divided by the work W required to remove the heat is known as the coefficient of performance, or COP, of a refrigerator (i.e., the work done by the compressor). The required inside temperature and the outside temperature have a significant impact on the COP.
As the inside temperature of the refrigerator decreases, its coefficient of performance decreases. The coefficient of performance (COP) of refrigeration is always more than 1.
The heat produced in the cold compartment, H = 780.0 J
Work done in ideal refrigerator, W = 130.0 J
Refrigerator's coefficient of performance = H/W
= 780/130
= 6
Therefore, the refrigerator's coefficient of performance is 6.
Energy conservation requires the exhaust heat to be = 780 + 130
= 910 J
Learn more about coefficient here:
brainly.com/question/18915846
#SPJ4