ANSWER:
Let t = logtan[x/2]
⇒dt = 1/ tan[x/2] * sec² x/2 × ½ dx
⇒dt = 1/2 cos² x/2 × cot x/2dx
⇒dt = 1/2 * 1/ cos² x/2 × cosx/2 / sin x/2 dx
⇒dt = 1/2 cosx/2 / sin x/2 dx
⇒dt = 1/sinxdx
⇒dt = cosecxdx
Putting it in the integration we get,
∫cosecx / log tan(x/2)dx
= ∫dt/t
= log∣t∣+c
= log∣logtan x/2∣+c where t = logtan x/2
1 3 4
1 -- + 1 -- = 2 --
5 5 5
Explanation:
1 + 1 = 2
1/5 + 3/5 = 4/5<span />
Answer:
Step-by-step explanation:
Answer:
SA = 615.4 yd²
Step-by-step explanation:
The surface area (SA) of a sphere is calculated as
SA = 4πr² ← r is the radius
Here diameter = 14, thus r = 14 ÷ 2 = 7, then
SA = 4π × 7² = 4π × 49 = 196π = 196 × 3.14 ≈ 615.4 yd²