It is important to use low flame when evaporating water from a recovered filtrate because then the water and filtrate will not spatter and the filtrate can also be recovered after evaporating water.
If flame is not low then water as well as got spatter so it is important to use low flame so that the water and filtrate will not spatter.
Answer:
Explanation:
A childs lung can hold .11mols/ per 2.8 L so that gives us a molarity of .039M
A adults lungs can hold .18 mols /per 4.6 so that gives us .039M aswell meaining that the lung capacity between the two is not different.
Answer:
C3H7OH → C3H6 + H20
Explanation:
If we look at the reactant and the product we will realize that the reactant is an alcohol while the product is an alkene. The reaction involves acid catalysed elimination of water from an alcohol.
Water is a good leaving group, hence an important synthetic route to alkenes is the acid catalysed elimination of water from alcohols. Hence the conversion represented by C3H7OH → C3H6 + H20 is an elimination reaction in which water is the leaving group.
To find the chemical formula of an ionic compound, the first step is to find the charge of the 2 ions. As given already, the charge of sodium ion is 1+, and carbonate ion has a charge of 2-. We can picture it like that: Sodium ion loses 1 electron and carbonate ion gains 2.
The next step is to find how the 2 ions can lose and gain electrons equally. In this case, since each Na ion only loses 1 electron, it cannot satisfy the need of one carbonate ion, since they need 2, not 1. Therefore, 2 Na ions can cover the need of one carbonate ion. So, the ratio of Na to CO3 ion should be 2:1.
Now just combine the 2 ions, positive one at the front, which makes it NaCO3, make sure you do not add the charge and notice that CO3 is a molecule itself so do not remove the 3. Now because the ratio is 2:1, so the final formula is Na2CO3, no need to add 1 if the ratio is 1.
Your answer should be Na2CO3.
Answer:
Beryllium
Explanation:
They are in the same group