Step-by-step explanation:
given,
measures of 3 angles of triangle,
angle 1 = 3x
angle 2 = 2x + 15°
angle 3 = 3x + 5 °
sum of the angles should be 180°
so,
angle 1 + 2 + 3 = 180°
after inserting the values we got,
3x + 2x + 15 + 3x + 5 = 180°
→ 8x + 20 = 180°
→ 8x = 180 - 20 = 160°
→ x = 160/8 = 2
→ x = 20
therefore,
angle
1 = 3x = 3 × 20 = 60
2 = 2x + 15 = 2(20) + 15 = 55°
3 = 3x + 5 = 3(20) + 5 = 65°
as given,
their sum should be 180° so,
60 + 55 + 65 = 180°
<em><u>hope </u></em><em><u>this </u></em><em><u>answer </u></em><em><u>helps </u></em><em><u>you </u></em><em><u>dear.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>I </u></em><em><u>guess </u></em><em><u>dear </u></em><em><u> </u></em><em><u>the </u></em><em><u>measure</u></em><em><u> </u></em><em><u>of </u></em><em><u>the </u></em><em><u>angles </u></em><em><u>of </u></em><em><u>traingle </u></em><em><u>have </u></em><em><u>x </u></em><em><u>in </u></em><em><u>their </u></em><em><u>expression!</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>if </u></em><em><u>they </u></em><em><u>have </u></em><em><u>than </u></em><em><u>this </u></em><em><u>is </u></em><em><u>the </u></em><em><u>answer!</u></em>
You need to split up the irregular shape into shapes that you are familiar with them find the area of each piece and add it together. i’m not sure if that made sense.
Answer:
50%
Step-by-step explanation:
Answer:
(4,6)
Step-by-step explanation:
The midpoint=(
=(4,6)
Answer:
The correct option for this is C.) The mean and median age are more likely to be the same for the students in Math 1.
Step-by-step explanation:
i) The median age of the students is Math 1 is less than the median age of the students in Math 2.
This statement is NOT TRUE as the median age of students in Math 1 = median age of students in Math 2 = 19
ii) The mean and median age are most likely the same for both sets of data.
This statement is NOT TRUE. The mean age of students in Math 2 should be greater than mean age of students in Math 1.
iii) The mean and median age are more likely to be the same for the students in Math 1.
This statement is TRUE.