Given that f(x) = x/(x - 3) and g(x) = 1/x and the application of <em>function</em> operators, f ° g (x) = 1/(1 - 3 · x) and the domain of the <em>resulting</em> function is any <em>real</em> number except x = 1/3.
<h3>How to analyze a composed function</h3>
Let be f and g functions. Composition is a <em>binary function</em> operation where the <em>variable</em> of the <em>former</em> function (f) is substituted by the <em>latter</em> function (g). If we know that f(x) = x/(x - 3) and g(x) = 1/x, then the <em>composed</em> function is:



The domain of the function is the set of x-values such that f ° g (x) exists. In the case of <em>rational</em> functions of the form p(x)/q(x), the domain is the set of x-values such that q(x) ≠ 0. Thus, the domain of f ° g (x) is
.
To learn more on composed functions: brainly.com/question/12158468
#SPJ1
Always do the parentheses first. In this case, there are two parentheses, so do the parentheses inside the other parentheses first. After that, it’s just simple addition, subtraction, and multiplication.
(69-9)= 60
(60+23)= 83
83x4= 332
Answer: 12+n
Step-by-step explanation:
See https://web2.0calc.com/questions/help_29603.