Answer;
=0.43 m/s²
Solution;
There will be the tension in the cable, T, upwards and the weight of the elevator, mg, downwards.
By Newton's second law, the sum of the forces will be equal to mass×acceleration.
Resultant force = m × a
Then T - mg = ma so the tension in the cable is
T = m(g+a)
The cable will break when T = 21,800 N
Solving for a, that happens when
a = 21800/2130 - g
= 10.23 - g (in m/s^2)
If you're using g = 9.8 m/s^2
Then the maximum acceleration allowed is 10.23-9.8 = 0.43 m/s^2
(B) 1.00 m
Explanation:
Since the meter stick is traveling with Jill, it will have the same speed as she does so relative to Jill, the meter stick is stationary so its length remains 1.00 m as measured by her.
Answer:
14,700 N
Explanation:
The hyppo is standing completely submerged on the bottom of the lake. Since it is still, it means that the net force acting on it is zero: so, the weight of the hyppo (W), pushing downward, is balanced by the upward normal force, N:
(1)
the weight of the hyppo is

where m is the hyppo's mass and g is the gravitational acceleration; therefore, solving eq.(1) for N, we find

Answer:
The left side, Fe+CI2 because the product which is the end result which is Fe2CI3
Explanation: