The length of the square pool is 8. 49cm
<h3>How to determine the area</h3>
Note that the formula for finding the area of a square is given as;
Area = length^2
We have
Area = 72 m²
Substitute into the formula
I^2 = 72
Find the square root of both sides
I= √72
I = 8. 49cm
The length of the square pool given as I is 8. 49cm
Thus, the length of the square pool is 8. 49cm
Learn more about area of a square here:
brainly.com/question/486778
#SPJ1
Both recipes would add up to 1 5/12 this is using the black widow way
Answer:
See photo (again)
Step-by-step explanation:
Answer:
1. Number line 2
2. Number line 1
3. Number line 4
4. Number line 3
Step-by-step explanation:
1. x – 99 ≤ -104
Solving by adding +99 on both sides
x - 99 +99 ≤ -104 +99
x ≤ -5
Number line 2 represent x ≤ -5
2. x – 51 ≤ -43
Adding +51 on both sides
x -51 +51 ≤ -43 +51
x ≤ 8
Number line 1 represent x ≤ 8
3. 150 + x ≤ 144
Adding -150 on both sides
150 + x -150 ≤ 144 -150
x ≤ -6
Number line 4 represent x ≤ -6
4. 75 < 69 – x
Adding +x on both sides
75 + x < 69 -x +x
x < 69 -75
x < -6
Number line 3 represent x < -6
Answer:
Correct answer: Fourth answer As = 73.06 m²
Step-by-step explanation:
Given:
Radius of circle R = 16 m
Angle of circular section θ = π/2
The area of a segment is obtained by subtracting from the area of the circular section the area of an right-angled right triangle.
We calculate the circular section area using the formula:
Acs = R²· θ / 2
We calculate the area of an right-angled right triangle using the formula:
Art = R² / 2
The area of a segment is:
As = Acs - Art = R²· θ / 2 - R² / 2 = R² / 2 ( θ - 1)
As = 16² / 2 · ( π/2 - 1) = 256 / 2 · ( 1.570796 - 1) = 128 · 0.570796 = 73.06 m²
As = 73.06 m²
God is with you!!!