Answer:
The molar mass of the unknown gas is 100.4 g/mol
Explanation:
Step 1: Data given
Molar mass of argon = 39.95 g/mol
After filling with argon the flask gained 3.221 grams
After filling with an unknown gas, the flask gained 8.107 grams
Step 2: Calculate the molar mass of the unknown gas
The gas with the higher molar mass will have the higher density.
Ar - 3.224 g; molar mass = 39.95 g/mol
X = 8.102 g; molar mass = ??
Molar mass of the unknown gas = 8.102g X *(39.95 g/mol / 3.224 g) = 100.4 g/mol
The molar mass of the unknown gas is 100.4 g/mol
Answer:
Rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Explanation:
According to equation 2 SO₂(g) + O₂(g) → 2 SO₃(g)
Rate of disappearance of reactants = rate of appearance of products
⇒
-----------------------------(1)
Given that the rate of disappearance of oxygen =
= 3.64 x 10⁻³ M/s
So the rate of formation of SO₃
= ?
from equation (1) we can write
![\frac{d[SO_{3}] }{dt} = 2 [-\frac{d[O_{2}] }{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BSO_%7B3%7D%5D%20%7D%7Bdt%7D%20%3D%202%20%5B-%5Cfrac%7Bd%5BO_%7B2%7D%5D%20%7D%7Bdt%7D%20%5D)
⇒
= 2 x 3.64 x 10⁻³ M/s
⇒
= 7.28 x 10⁻³ M/s
∴ So the rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Answer:
Explanation:
None of the statement is true for both chemical and nuclear reactions. In chemical reactions, mass is always conserved and the type of atoms are also conserved.
Answer:
0.00000363618
could be wrong.
double check me someone or just trust me
(don't blame me if you get it wrong)