Answer:
Chlorine (Cl)
Explanation:
The equation would be:
→ 
This is because no atom is lost in a reaction. Chlorine would be the missing chemical as it is on the other side of the equation and needs to be accounted for on the products side.
Answer:
b. CH₂Cl₂ is more volatile than CH₂Br₂ because of the large dispersion forces in CH₂Br₂
Explanation:
CH₂Cl₂ is more volatile than CH₂Br₂ (b.p of CH₂Cl₂ = 39,6 °C; b.p of CH₂Br₂ = 96,95°C). Thus, c. and d. are FALSE
Dipole-dipole interactions in CH₂Cl₂ are greater than the dipole-dipole interactions in CH₂Br₂ because Cl is more electronegative that Br (Cl = 3,16; Br = 2,96). But this mean CH₂Cl₂ is less volatile than CH₂Br₂ but it is false.
There are large dispersion forces in CH₂Br₂ because Br has more electrons and protons than Cl. Large disperson forces mean CH₂Br₂ is less volatile than CH₂Cl₂ and it is true.
I hope it helps!
The correct option is A.
A chemical reaction is said to have reached an equilibrium stage if the rate of reaction of the forward reaction is equal to the rate of reaction of the reverse reaction. Two way arrows are usually used to depict equilibrium reactions. These arrows indicate that the chemical reaction can move both ways. At the equilibrium point the concentrations of both the reactants and the products are equal.
In a solid the particles are all really close together and stuck like that. As the solid melts and becomes a liquid the particles spread out. A solid won’t easily change its shape because the particles are bound together but in a liquid the shape is more fluid, take water when you pour it into a container it will change to fit the shape of a container this is because the particles aren’t as close and can move around. The particles of a solid change when it melts because it is changing states to a liquid.