Answer:
0.098 moles
Explanation:
Let y represent the number of moles present
1 mole of Ba(OH)₂ contains 2 moles of OH- ions.
Hence, 0.049 moles of Ba(OH)2 contains y moles of OH- ions.
To get the y moles, we then do cross multiplication
1 mole * y mole = 2 moles * 0.049 mole
y mole = 2 * 0.049 / 1
y mole = 0.098 moles of OH- ions.
1 mole of OH- can neutralize 1 mole of H+
Therefore, 0.098 moles of HNO₃ are present.
The partial stress of H2 is 737.47 mmHg Let's observe the Ideal Gas Law to find out the whole mols.
We count on that the closed vessel has 1L of volume
- P.V=n.R.T
- We must convert mmHg to atm. 760 mmHg.
- 1 atm
- 755 mmHg (755/760) = 0.993 atm
- 0.993 m.1L=n.0.082 L.atm/mol.K .
- 293 K(0.993 atm 1.1L)/(0.082mol.K /L.atm).
- 293K = n
- 0.0413mols = n
These are the whole moles. Now we are able to know the moles of water vapor, to discover the molar fraction of it.
- P.V=n.R.T
- 760 mmHg. 1 atm
- 17.5 mmHg (17.5 mmHg / 760 mmHg)=0.0230 atm
- 0.0230 m.1L=n.0.082 L.atm/mol.K.293 K(0.0230atm.1L)/(0.082mol.K/L.atm .293K)=n 9.58 × 10 ^ 4 mols = n.
- Molar fraction = mols )f gas/general mols.
- Molar fraction water vapor =9.58×10^ -four mols / 0.0413 mols
- Sum of molar fraction =1
- 1 - 9.58 × 10 ^ 4 × mols / 0.0413 ×mols = molar fraction H2
- 0.9767 = molar fraction H2
- H2 pressure / Total pressure =molar fraction H2
- H2 pressure / 55mmHg = =0.9767 0.9767 = h2 pressure =755 mmHg.
- 737,47 mmHg.
<h3>What is a mole fraction?</h3>
Mole fraction is a unit of concentration, described to be identical to the variety of moles of an issue divided through the whole variety of moles of a solution. Because it's miles a ratio, mole fraction is a unitless expression.
Thus it is clear that the partial pressure of H2 is 737,47 mmHg.
To learn more about partial pressure refer to the link :
brainly.com/question/19813237
<h3 />
We are already given with the mass of the Xe and it is 5.08 g. We can calculate for the mass of the fluorine in the compound by subtracting the mass of xenon from the mass of the compound.
mass of Xenon (Xe) = 5.08 g
mass of Fluorine (F) = 9.49 g - 5.08 g = 4.41 g
Determine the number of moles of each of the element in the compound.
moles of Xenon (Xe) = (5.08 g)(1 mol Xe / 131.29 g of Xe) = 0.0387 mols of Xe
moles of Fluorine (F) = (4.41 g)(1 mol F/ 19 g of F) = 0.232 mols of F
The empirical formula is therefore,
Xe(0.0387)F(0.232)
Dividing the numerical coefficient by the lesser number.
<em> XeF₆</em>
Answer:
The number of moles of the chemical constituents will be less than the actual amount.
Explanation:
In calculating empirical formula, we begin with the number of grams of each element, given in the problem.
Given that the spill will affect the mass concentration of the copper chloride solution, calculations to determine the molecular formula (using Molarity = mass conc ÷ molecular mass ) would give a lesser result, which would in turn lower the number of moles of the copper and chloride in the empirical formula calculation.