Answer:
The final temperature of sulfur dioxide gas is 215.43 C
Explanation:
Gay Lussac's Law establishes the relationship between the temperature and the pressure of a gas when the volume is constant. This law says that if the temperature increases the pressure increases, while if the temperature decreases the pressure decreases. In other words, the pressure and temperature are directly proportional quantities.
Mathematically, the Gay-Lussac law states that, when a gas undergoes a transformation at constant volume, the quotient of the pressure exerted by the temperature of the gas remains constant:

Assuming you have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment, by varying the temperature to a new value T2, then the pressure will change to P2, and it will be true:

The reference temperature is the absolute temperature (in degrees Kelvin)
In this case:
- P1= 0.450 atm
- T1= 20 C= 293.15 K (being 0 C= 273.15 K)
- P2=0.750 atm
- T2= ?
Replacing:

Solving:


T2=488.58 K
Being 273.15 K= 0 C, then 488.58 K= 215.43 C
<u><em>The final temperature of sulfur dioxide gas is 215.43 C</em></u>
I'm pretty sure the answer is Temperature
Answer:
False
Explanation:
If the row echelon form of the augmented matrix for a linear system has a row of zeros, then the there must not have infinitely many solution,
we can prove this with an example. Suppose we have an augmented matrix A for linear system with a row of zeros,
1 0 0 1
A= 0 1 0 -2
0 0 1 - 1
0 0 0 0
we get
x1=1
x2=-2
x3=-1
so, system has an unique solution.
we can take inference that the given statement is wrong
<h2>Answer: C) 1s²2s²2p⁶</h2>
<h3>Explanation:</h3>
A noble gas has 8 electrons between the p and s orbitals of the outer shell. Helium is the exception because it only has two electrons.
<h3> ∴ 1s²2s²2p⁶ is the noble gas (neon)</h3>
Answer:
Explanation:
The given pH = 8.55
Unknown:
[H₃O⁺] = ?
[OH⁻] = ?
In order to find these unknowns we must first establish some relationship.
pH = -log[H₃O⁺]
8.55 = -log[H₃O⁺]
[H₃O⁺] = inverse log₁₀(-8.55) = 2.82 x 10⁻⁹moldm⁻³
To find the [OH⁻],
pH + pOH = 14
pOH = 14 - pH = 14 - 8.55
pOH = 5.45
pOH = -log[OH⁻]
[OH⁻] = inverse log₁₀ (-5.45) = 3.55 x 10⁻⁶moldm⁻³
The solution is basic because it has more concentration of OH⁻ ions compared to H⁺ ions.