Answer:
Environment A is not undergoing succession, and Environment B is.
Explanation:
Ecological succession is a gradual process in which ecosystems significantly change over time. Ecological succession is a term used by scientists to describe the change in the structure of a community of different species, or ecosystem. This concept of ecological succession stems from a desire to understand the patterns of change in large and complex ecosystems like forests and how they can exist in places known to be recently formed, such as volcanic islands.
In environment A, the ecosystem is not really changing, organisms are merely returning to their natural habitat. It does not represent any change in the ecosystem.
In environment B, the original ecosystem has become grossly modified, first by the appearance of lichen and mosses and subsequently by grasses shrubs and animals. These sequence of events correlate well with the idea of ecological succession presented in the opening paragraph hence environment B is undergoing ecological succession.
Answer:
1.71 kJ/mol
Explanation:
The expression for the calculation of the enthalpy change of a process is shown below as:-
Where,
is the enthalpy change
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass of CaO = 1.045 g
Specific heat = 4.18 J/g°C
So,
Also, 1 J = 0.001 kJ
So,

Also, Molar mass of CaO = 56.0774 g/mol

Thus, Enthalpy change in kJ/mol is:-

Answer:
9 is clay, silt, sand in that order
Explanation:
Answer:
2Mg^+ +O2 right arrow 2MgO
Explanation:
Answer:

Explanation:
<em>Ferrous Sulphate</em>
<em> is generally found as Lime-Green Crystals. On heating, these crystals almost immediately turn white-yellow. They then, break down to produce an anhydrous mixture of Sulphur Trioxide </em>
<em>, Sulphur Dioxide </em>
<em> as well as Ferric Oxide </em>
<em>.</em>
<em>We can hence, frame a skeletal equation of this reaction and try to balance it.</em>
<em>Hence,</em>

<em>Now,</em>
<em>a)In order to balance it through the 'Hit &Trial Method', we'll follow a series of </em><em>steps</em><em>:</em>
<em>1. First, lets compare the number of Fe (Iron) atoms on the RHS and LHS. We find that, the no. of Fe Atoms on the RHS is twice the number of Fe Atoms on the LHS. We hence, add a co-effecient 2 beside </em>
.
<em>2. Now, Iron atoms, Sulphur Atoms and Oxygen atoms occur 2, 2, 8 respectively on both the sides:</em>
<em> Hence, As all the other elements as well as iron, balance, we've arrived upon our Balanced Equation :</em>
<em> </em>
<em>b) We know that, decomposition reactions are [generally] endothermic reactions in which Large Compounds </em><em>decompose </em><em>into smaller elements and compounds. Here, as Ferrous Sulphate </em><em>decomposes </em><em>into Sulphur Dioxide, Sulphur Trioxide and Ferric Oxide, the reaction that occurs here is </em><em>Decomposition Reaction.</em>