Answer:
1.042g/cm^3
Step-by-step explanation:
Answer:
The last listed functional expression:

Step-by-step explanation:
It is important to notice that the two linear expressions that render such graph are parallel lines (same slope), and that the one valid for the left part of the domain, crosses the y-axis at the point (0,2), that is y = 2 when x = 0. On the other hand, if you prolong the line that describes the right hand side of the domain, that line will cross the y axis at a lower position than the previous one (0,1), that is y=1 when x = 0. This info gives us what the y-intercepts of the equations should be (the constant number that adds to the term in x in the equations: in the left section of the graph, the equation should have "x+2", while for the right section of the graph, the equation should have x+1.
It is also important to understand that the "solid" dot that is located in the region where the domain changes, (x=2) belongs to the domain on the right hand side of the graph, So, we are looking for a function definition that contains
for the function, for the domain:
.
Such definition is the one given last (bottom right) in your answer options.

Answer:
-0.8333
Step-by-step explanation:
used omni calculator
https://www.omnicalculator.com/math/slope
Answer:
(A) Set A is linearly independent and spans
. Set is a basis for
.
Step-by-Step Explanation
<u>Definition (Linear Independence)</u>
A set of vectors is said to be linearly independent if at least one of the vectors can be written as a linear combination of the others. The identity matrix is linearly independent.
<u>Definition (Span of a Set of Vectors)</u>
The Span of a set of vectors is the set of all linear combinations of the vectors.
<u>Definition (A Basis of a Subspace).</u>
A subset B of a vector space V is called a basis if: (1)B is linearly independent, and; (2) B is a spanning set of V.
Given the set of vectors
, we are to decide which of the given statements is true:
In Matrix
, the circled numbers are the pivots. There are 3 pivots in this case. By the theorem that The Row Rank=Column Rank of a Matrix, the column rank of A is 3. Thus there are 3 linearly independent columns of A and one linearly dependent column.
has a dimension of 3, thus any 3 linearly independent vectors will span it. We conclude thus that the columns of A spans
.
Therefore Set A is linearly independent and spans
. Thus it is basis for
.
We will turn the left side into the right side.

Use the identity:



Now use the identity
solved for sin^2 x and for cos^2 x.



