Hippocampus
It is a small part of the brain located on the medial temporal love and forms important part of the limbic system, these are the regions that regulates emotions. This is also associated with memory, spatial navigation, consolidation of information. Damage to this area can cause memory loss, difficulty establishing memory . In Alzheimer's disease hippocampus is one of the first regions in the brain to be affected.
1. The branches of the bronchial tree ultimately ends at the alveoli.
Bronchial tree consist of bronchi, bronchioles, and alveoli. Bronchi are formed as the lower part of the trachea divides into two tubes. Bronchioles are smaller tube divisions of the bronchi. It walls contain smooth muscle and no cartilage. Alveoli are tiny ends of the alveolar ducts, which functions as the site for gaseous exchange.
2. Blood flows from the left atrium; mitral (bicuspid valves), the left ventricle, aortic valve, aorta, veins and heart, right side of the heart, superior and inferior vena cavae, right atrium, tricuspid valve, right ventricle, pulmonary valve, pulmonary trunk, pulmonary artery, lungs, pulmonary veins, then back to the heart...
3. Arteries and the veins differ in structures and they way they functions; Arteries carry oxygenated blood away from the heart to the body (except pulmonary artery) while veins carry deoxygenated blood back from the body to the heart (except pulmonary veins). A structural differences includes; the veins contain valves while arteries lack. Arteries have narrow lumen while veins have wide lumen. Lastly, blood carried by veins has higher pressure compared to blood carried in vessels.
4. The circulatory and respiratory systems work together to circulate blood and oxygen throughout the body. Air moves in and out of the lungs through the trachea, bronchi, and the bronchioles. Blood moves in and out of the lungs throgh the pulmonary arteries and veins that connect to the heart.
5. The cartilage rings of the trachea
They are strong but flexible tissues which support the trachea or the windpipe while still allowing it to move and flex during breathing. Additionally these cartilage rings are C-shaped to provide room for the esophagus, which lies along the back side of the trachea.
6. Functions of the larynx includes;
To protect the airway from choking on material in the throat
to regulate the flow of air into our lungs
The production of sounds used for speech
Larynx is part of the respiratory system and is located between the pharynx and the trachea. Humans use larynx to breathe, talk and swallow.
7. Structures that make up the pathway of air through the respiratory system starting with the external nares; We start with; External nares, nasal cavity, internal nares, nasopharynx, laryngopharynx,oropharynx, larynx, trachea, primary bronchus, secondary bronchus, tertiary bronchus, bronchiole, terminal bronchiole, respiratory bronchiole, alveolar duct, alveolar sac and alveolus.
A mutation within a gene that will insert a untimely cease codon in mRNA would result in a shortened polypeptide chain.
<h3>What occurs if there is a untimely end codon?</h3>
Thus, nonsense mutations occur when a premature nonsense or end codon is added in the DNA sequence. When the mutated sequence is translated into a protein, the resulting protein is incomplete and shorter than normal. Consequently, most nonsense mutations result in nonfunctional proteins
<h3>What mutation motives untimely cease codon?</h3>
In genetics, a nonsense mutation is a factor mutation in a sequence of DNA that effects in a premature stop codon, or a nonsense codon in the transcribed mRNA, and in a truncated, incomplete, and normally nonfunctional protein product.
Learn more about mutation here:
<h3>
brainly.com/question/17031191</h3><h3 /><h3>#SPJ4</h3>
Wind produces the energy, initial motion and direction of the surface current of the ocean.A<span>n </span>ocean current<span> is a seasonal directed movement of seawater.
</span>Surface ocean<span> currents are primarily </span>affected<span> by </span>wind. The Gulf Stream is example of it. <span>Trade </span>winds<span> push </span>water<span> along the top of the </span>ocean<span> and this results in formation of surface currents.</span>