1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Studentka2010 [4]
3 years ago
8

X^2-y^2=3y in polar form

Mathematics
1 answer:
Assoli18 [71]3 years ago
5 0

Answer:

Step-by-step explanation:

put x=r cos θ

y=r sin θ

r²cos²θ-r²sin²θ=3rsin θ

r²(cos²θ -sin²θ)=3r sin θ

r²cos 2θ=3rsinθ

r cos 2θ=3 sin θ

r=3sec 2θ sin θ

You might be interested in
Need help pleaseeeee
saw5 [17]

Answer:

≈ 130.2 cm²

Step-by-step explanation:

A = 8×10 + π·r²

= 80 + 3.14×16

= 80 + 50.24

= 130.24

≈ 130.2 cm²

7 0
3 years ago
QUESTION 1 (3 points)<br>Solve the following equation. Show all work.<br>4x² - 5 = 76​
weqwewe [10]

Answer:

x_{1} =-\frac{9}{2} \\x_{2} = \frac{9}{2}

Step-by-step explanation:

4x^2 = 76 + 5\\4x^2 = 81\\x^2 = \frac{81}{4}\\ x = |\frac{9}{2}|

5 0
3 years ago
Read 2 more answers
Solve the equation for x. (find an exact answer without a calculator) e^(4x+2)-4=0.
Kay [80]
E^(4x+2)-4=0
e^(4x+2)=4
Ln (e^(4x+2))=ln 4
(4x+2)ln e=ln 4
4x+2=ln 4
4x=ln (4)-2
x=(ln (4) -2)/4

Answer: x=(ln (4)-2)/4

8 0
4 years ago
77. the volume of a cube is increasing at a rate of <img src="https://tex.z-dn.net/?f=10%20%5Cmathrm%7B~cm%7D%5E%7B3%7D%20%2F%20
Colt1911 [192]

Answer:

\displaystyle \frac{4}{3}\text{cm}^2/\text{min}

Step-by-step explanation:

<u>Given</u>

<u />\displaystyle \frac{dV}{dt}=10\:\text{cm}^3/\text{min}\\ \\V=s^3\\\\SA=6s^2\\\\\frac{d(SA)}{dt}=?}\:;s=30\text{cm}

<u>Solution</u>

(1) Find the rate of the cube's edge length with respect to time at s=30:

\displaystyle V=s^3\\\\\frac{dV}{dt}=3s^2\frac{ds}{dt}\\ \\10=3(30)^2\frac{ds}{dt}\\ \\10=3(900)\frac{ds}{dt}\\\\10=2700\frac{ds}{dt}\\\\\frac{10}{2700}=\frac{ds}{dt}\\\\\frac{ds}{dt}=\frac{1}{270}\text{cm}/\text{min}

(2) Find the rate of the cube's surface area with respect to time at s=30:

\displaystyle SA=6s^2\\\\\frac{d(SA)}{dt}=12s\frac{ds}{dt}\\ \\\frac{d(SA)}{dt}=12(30)\biggr(\frac{1}{270}\biggr)\\\\\frac{d(SA)}{dt}=\frac{360}{270}\biggr\\\\\frac{d(SA)}{dt}=\frac{4}{3}\text{cm}^2/\text{min}

Therefore, the surface area increases when the length of an edge is 30 cm at a rate of \displaystyle \frac{4}{3}\text{cm}^2/\text{min}.

6 0
2 years ago
A tuning fork moves with a velocity of 28.7 m/s with a frequency of 128 Hz. What is the wavelength of the
Lina20 [59]
B $:$:$;;$73 in drug hzsked
3 0
3 years ago
Other questions:
  • The equation
    6·2 answers
  • Indicate in standard form the equation of the line passing through the given point and having the given slope.
    14·1 answer
  • Which relations are functions?
    13·1 answer
  • How do i solve 14x-2=8x+6 (11+x)
    14·1 answer
  • Whaqt is the comon GCF of 54 and 27 pls tell me i need to know
    9·1 answer
  • Write and expression so that the quotient of a decimal and a whole number is 0.04
    13·2 answers
  • Which recursive formula can be used to generate the sequence shown, where f(1) = 9.6 and n &gt; 1?
    5·1 answer
  • Sara compra 3 naranjas a Q 2.00 cada una. Compra un melón a
    10·1 answer
  • The value of a home is $899,000 and increasing in value at a rate of 1% per year. Use an exponential growth function to find the
    12·1 answer
  • At an ice cream parlor, ice cream cones cost $1.10 and sundaes cost $2.35. One day, the receipts for a total of 172 cones and su
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!