Answer:
ummm
Step-by-step explanation:
Answer:
c) there is an efficient algorithm to test whether an integer is prime
Step-by-step explanation:
The basis of modern cryptography is the fact that factoring large numbers is computationally difficult. No algorithm is efficient for that purpose.
<h3>Choices</h3><h3>a)</h3>
False - there is no known efficient algorithm for factoring large numbers
<h3>b)</h3>
False - there are 78,498 prime numbers less than 1,000,000. That is about 8% of them--far from being "most of the integers."
<h3>c) </h3>
True - a variety of algorithms exist for testing primality. In 2002, a test was published that runs in time roughly proportional to the 7.5 power of the logarithm of the number being tested.
<h3>d)</h3>
False - there is no known efficient algorithm for factoring large numbers
Answer:
£1.22
Step-by-step explanation:
Total cost: 5.95+1.62+0.25+2(0.48)=8.78
Change: 10-8.78=1.22
Serena is only paying $7 so her change would be $13
Answer:
0.3
Step-by-step explanation:
First you need to add 1/4 and 9/20, and you would get 7/10. That only leaves 3/10, which as a decimal is 0.3.