1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lelechka [254]
3 years ago
6

PLEASE HELP ASAP!!! CORRECT ANSWERS ONLY PLEASE!!! I CANNOT RETAKE THIS!!

Mathematics
1 answer:
gavmur [86]3 years ago
6 0

\text{Use}\\\\a^2-b^2=(a-b)(a+b)\\\\i=\sqrt{-1}\to i^2=-1\\---------------------\\\\x^2+25=x^2+5^2=x^2-(-1)(5^2)=x^2-(i^2)(5^2)=x^2-(5i)^2\\\\\boxed{x^2+25=(x-5i)(x+5i)}

You might be interested in
The equation y=-7x-5 and the solution of (-2,9)
Black_prince [1.1K]
Y=-7x-5 
9=-7(-2)-5
9=14-5
9=9
Please mark the brainliest, if you think i helped!
8 0
3 years ago
What is 184.24 to 4 significant figures
siniylev [52]
184.2 is the answer to 4 significant figure
4 0
2 years ago
If
baherus [9]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: cos 330 = \frac{\sqrt3}{2}

Use the Double-Angle Identity: cos 2A = 2 cos² A - 1

\text{Scratchwork:}\quad \bigg(\dfrac{\sqrt3 + 2}{2\sqrt2}\bigg)^2 = \dfrac{2\sqrt3 + 4}{8}

Proof LHS → RHS:

LHS                          cos 165

Double-Angle:        cos (2 · 165) = 2 cos² 165 - 1

                             ⇒ cos 330 = 2 cos² 165 - 1

                             ⇒ 2 cos² 165  = cos 330 + 1

Given:                        2 \cos^2 165  = \dfrac{\sqrt3}{2} + 1

                              \rightarrow 2 \cos^2 165  = \dfrac{\sqrt3}{2} + \dfrac{2}{2}

Divide by 2:               \cos^2 165  = \dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \bigg(\dfrac{2}{2}\bigg)\dfrac{\sqrt3+2}{4}

                             \rightarrow \cos^2 165  = \dfrac{2\sqrt3+4}{8}

Square root:             \sqrt{\cos^2 165}  = \sqrt{\dfrac{4+2\sqrt3}{8}}

Scratchwork:            \cos^2 165  = \bigg(\dfrac{\sqrt3+1}{2\sqrt2}\bigg)^2

                             \rightarrow \cos 165  = \pm \dfrac{\sqrt3+1}{2\sqrt2}

             Since cos 165 is in the 2nd Quadrant, the sign is NEGATIVE

                             \rightarrow \cos 165  = - \dfrac{\sqrt3+1}{2\sqrt2}

LHS = RHS \checkmark

4 0
3 years ago
Color. Frequency
tankabanditka [31]

Answer:

the answer is blue

6 0
3 years ago
Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software,
grandymaker [24]

Solution:

There is no saddle point (DNE). However, there is local maximum at (1, 1/2) for the given function.

Explanation:

we have function of two variables f(x,y)= 9-2x+4y-x^2-4y^2

we will find the values by partial derivative with respect to x,y,xy

f_{x}= -2 -2x

f_{y}= 4 -8y

to find the saddle point we should first find the critical points so equate

-2 -2x=0 and   4 -8y=0

we get x= 1  and y =1/2 so, critical points are (1,1/2)

to find local maximum or minimum we have to find f_{xx},  f_{yy} and f_{xy}

formula is f_{xx} *f_{yy} - f^{2_{xy} } =0

f_{xx} = -2

f_{yy} = -8

f^{2_{xy} } =0

putting values in formula

(-2)*(-8) -0 =16 > 0, and f_{xx}< 0  and f_{yy}<0

so, here we have local maximum

we have no saddle point for this function by using the same formula we used to find extrema.



4 0
3 years ago
Read 2 more answers
Other questions:
  • You are designing a birdhouse. You would like this birdhouse to look like a miniature version of the house you live in. You plan
    6·1 answer
  • 63 is equal to the product of 9 and x
    5·1 answer
  • Pls I really need help with this
    9·1 answer
  • HELP ASAPP WILL MARLY BRAINLIEST IF RIGHT
    14·1 answer
  • How do I find the answer
    9·2 answers
  • HELP ME I NEED YOUR HELP PEALSE will give brainliest
    13·1 answer
  • WILL GIVE YOU 50 POINTS
    12·1 answer
  • List two pairs of an alternate interior angle and write them as a congress statements​
    10·1 answer
  • Can u pls help me with this question asap ​
    13·1 answer
  • 2/3 x + 5/6 = x - 1/2<br><br><br><br><br> SHOW WORK PLEASE
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!