1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
amid [387]
3 years ago
10

Which of the following distinguishes electromagnetic waves from mechanical waves

Physics
1 answer:
Ivan3 years ago
6 0

Answer:

Explanation:

1. Mechanical waves require material medium for their propagation while electromagnetic waves do not require material medium for their propagation.

2. Mechanical waves can either be transverse or longitudinal while electromagnetic waves are transverse.(Transverse waves are waves in which the vibration of the particules of the medium is perpendicular to the direction of the motion of wave. E.g water waves, waves of a plucked string and all electromagnetic waves RIVUXG . Longitudinal waves are waves whose vibration are parallel to the direction of the motion of the medium e.g waves in strings, sound waves.e.t.c)

You might be interested in
Determine the thrust produced if 1.5 x 10^3 kg of gas exits the combustion chamber each second, with a speed of 4.00 x 10^3 m/s.
ozzi

Answer:

The thrust is 6\times 10^6\ N

Explanation:

Given that,

Mass of gas, m=1.5\times 10^3\ kg

The rate at which the gas is expelling, \dfrac{dv}{dt}=4\times 10^{3}\ m/s

We need to find the thrust produced by the gas.

We know that force is equal to the rate of change of momentum. So,

F=\dfrac{p}{t}

Also, p = mv

F=\dfrac{mv}{t}

So,

F=1.5\times 10^3\times 4\times 10^3\\\\F=6\times 10^6\ N

So, the thrust is 6\times 10^6\ N

3 0
3 years ago
Suppose that in a lightning flash the potential difference between a cloud and the ground is 1.0*109 V and the quantity of charg
nata0808 [166]

Answer:

a) U_{e} = 3 \times 10^{10}\,J, b) v \approx 7745.967\,\frac{m}{s}

Explanation:

a) The potential energy is:

U_{e} = Q \cdot \Delta V

U_{e} = (30\,C)\cdot (1.0\times 10^{9}\,V)

U_{e} = 3 \times 10^{10}\,J

b) Maximum final speed:

U_{e} = \frac{1}{2}\cdot m \cdot v^{2}\\v = \sqrt{\frac{2\cdot U_{e}}{m} }

The final speed is:

v=\sqrt{\frac{2\cdot (3 \times 10^{10}\,J)}{1000\,kg} }

v \approx 7745.967\,\frac{m}{s}

3 0
3 years ago
Use the diagram to explain how convection occurs inside the earth. What could convection cause to occur on earths surface
liubo4ka [24]

Answer:

mantle convection is the very slow creeping motion of earths solid silicate mantle caused by convection currents carrying heat from the interior to the planet's surface.

3 0
2 years ago
Space vehicles traveling through Earth's radiation belts can intercept a significant number of electrons. The resulting charge b
Elena L [17]

Answer:

a) 0.167 μC/m^2

b) 1.887 * 10^4 V/m

Explanation:

Hello!

First let's find the surface charge density:

a)

Since thesatellite is metallic, the accumalted charge will be uniformly distribuited on its surface. Therefore the charge density σ will be:

σ = Q/A

Where A is the area of the satellite, which is:

A=4πr^2 = πd^2 = π(1.9m)^2

Therefore:

σ = (1.9)/(π (1.9)^2) μC/m^2 = 0.167 μC/m^2

Now let's calculate the electric field

b)

Just outside the surface of the satellite the elctric field will be:

E = σ/ε0

Where      ε0=8.85×10^−12 C/Vm

Therefore:

E = (0.167*10^-6 C/m^2) / (8.85*10^-12  C/Vm) = 0.01887 *10^6 V/m

E = 1.887 * 10^4 V/m

5 0
2 years ago
A 61 kg skater is traveling at 2.5 m/s while carrying a 4.0 kg bowling ball. After he throws the bowling ball forward at twice t
gregori [183]

The final velocity of the skater is 2.34 m/s forward

Explanation:

We can solve this problem by using the law of conservation of momentum. In fact, the total momentum of the system before and after the ball is thrown must be conserved, in absence of external forces.

Before the ball is thrown, the total momentum is:

p_i = (M+m)u

where

M = 61 kg is the mass of the skater

m = 4.0 kg is the mass of the ball

u = 2.5 m/s (forward) is the combined velocity of the skater and the ball

After, the ball is thrown at twice the velocity, so the final total momentum is

p_f = MV+mv

where

V is the final velocity of the skater

v = 2(2.5) = 5.0 is the final velocity of the ball

Since the total momentum must be conserved, we can write

p_i = p_f\\(M+m)u = MV+mv\\V=\frac{(M+m)u-mv}{M}=\frac{(61+4.0)(2.5)-(4.0)(5.0)}{61}=2.34 m/s

So, the skater is moving at 2.34 m/s (forward) after the shot.

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • 1) My 14V car battery could be used to charge my laptop, but I need to use an inverter to first convert it to a standard 120V. T
    13·1 answer
  • A roller coaster starts at the top of a straight track that is inclined at 30degrees with the horizontal. This causes it to acce
    5·2 answers
  • two boys started runing stright to ward each other from two pionts 100m aparts.one run at speed of 4m/s and other at 6m/s.how fa
    15·1 answer
  • Which term refers to the structure that forms the surface of a cell separating its contents from the outside world
    5·2 answers
  • True or false : In crystalline solids the particles are not arranged in a regular pattern
    14·2 answers
  • Consider this situation: A force is applied to a box to move it
    11·1 answer
  • A box is 5 cm high, 4 cm wide, and 9 cm long. What is the
    7·1 answer
  • 6) A car of mass 1000kg moving with a velocity of 40m/s collides with a tree and comes to stop in 5s. What will be the force exe
    8·1 answer
  • Four blocks, each with the same volume, are submerged in a vat of oil. Which of the blocks will have have the largest buoyant fo
    15·1 answer
  • 1. Apply a constant force of 50 N directed to the right of the 50 kg Box. (2 pts)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!