<span>The correct option is C. Energy cannot be created or destroyed. This statement is known as law of conservation of energy, and it implies that whenever a certain form of energy does change, the loss of this form of energy must have converted into an another type of energy. A typical example is an object falling to the ground: initially, the object has gravitational potential energy. As the object falls down, it loses potential energy (since its altitude from the grounf decreases), but it acquires kinetic energy (because its velocity increases). In this example, potential energy has converted into kinetic energy, but the total energy of the object has remained constant.</span>
<span>The volcanic land forms at divergent ocean plate boundaries are oceanic ridges.</span>
Answer:
K.E = 30,000 J
Explanation:
Given,
The potential energy of the roller coaster car, P.E = 40000 J
The kinetic energy at height h/4, K.E = ?
According to the law of conservation of energy, the total energy of the system is conserved.
At height 'h', the total energy is,
P.E = mgh
K.E = 0
At height 'h/4', the total energy is
P.E + K.E = mgh
P.E = mgh/4
K.E = 1/2 mv²
Therefore,
mgh/4 + 1/2 mv² = mgh
gh/4 + v²/2 = gh
Hence,
v² = 3gh/2
Substituting in the K.E equation
K.E = 1/2 mv²
= 1/2 m (3gh/2)
= 3/4 mgh
= 3/4 x 40000
= 30000 J
Hence, the K.E of the roller coaster car is, K.E = 30000 J