Answer:
f.The period is independent of the suspended mass.
Explanation:
The period of a pendulum is given by

where
L is the length of the pendulum
g is the acceleration due to gravity
From the formula, we see that:
1) the period of the pendulum depends only on its length, L, and it is proportional to the square root of the length
2) the period does not depend neither on the mass of the pendulum, nor on its amplitude of oscillation
So, the only correct statements are
f.The period is independent of the suspended mass.
Note: statement "e.The period is proportional to the length of the wire" is also wrong, because the period is NOT proportional to the length of the wire, but it is proportional to the square root of it.
Yes, the volume of the cylinder will remain constant. As the radius decreases, the height will increase to make sure that the volume is kept the same.
We have been given a value of dr/dt and are required to find dh/dt
Because the volume is constant, we can plug it into the formula for the volume of the cylinder and rearrange it to make h the subject:
128 = πr²h
h = 128/πr²
Now we differentiate both sides:
dh/dr = -256/πr³
Applying the chain rule:
dh/dt = dh/dr x dr/dt
dh/dt = (-256/πr³) x -0.05
dh/dt = 64/5πr³; substituting the value of r
dh/dt = 64/5π(1.5)³
dh/dt = 1.21 in/sec
Weight = mass * gravity = 60 kg * 3.75 m/s² = 225 N
<span>Option D.</span>
Answer:
3.0883 x 10^10mg
Explanation:
1 kilogram = 1000 000 milligrams
So, 30 883 x 1000 000 = 30 883 000 000mg
The flat sheet of paper has more surface area than the crumpled ball