No, not exactly. They jiggle and tremble and vibrate a lot, but
they always basically stay in very nearly the same place.
It's like if you're allowed to go anywhere you want in your jail cell,
you wouldn't exactly call that "moving about freely".
False.
As temperature increases the more the electrons begin to vibrate more, as it decreases they vibrate less.
The acceleration of the electron is larger than the acceleration of the proton.
The reason for this is that the mass of the electron is smaller (about 1000 times smaller) than the mass of the proton. The two particles have same charge (e), so they experience the same force under the same electric field E:
However, according to Newton's second law, the force is the product between the mass particle, m, and its acceleration, a:
which can be rewritten as

we said that the force exerted on the two particles, F, is the same, while the mass of the electron is smaller: therefore, from the last formula we see that the acceleration of the electron will be larger than that of the proton.
Answer:

Explanation:
The frequency of a wave can be found using the following formula.

where <em>f</em> is the frequency, <em>v</em> is the velocity/wave speed, and λ is the wavelength.
The wavelength is 10 meters and the velocity is 200 meters per second.
- 1 m/s can also be written as 1 m*s^-1
Therefore:

Substitute the values into the formula.

Divide and note that the meters (m) will cancel each other out.


- 1 s^-1 is equal to Hertz
- Therefore, our answer of 20 s^-1 is equal to 20 Hz

The frequency of the wave is <u>20 Hertz</u>
<span>c) Assuming this maximum height was the result of one push from her parent, what was the
</span>