Answer:
1.551×10^-8 Ωm
Explanation:
Resistivity of a material is expressed as shown;.
Resistivity = RA/l
R is the resistance of the material
A is the cross sectional area
l is the length of the wire.
Given;
R = 0.0310 Ω
A = πd²/4
A = π(2.05×10^-3)²/4
A = 0.000013204255/4
A = 0.00000330106375
A = 3.30×10^-6m
l = 6.60m
Substituting this values into the formula for calculating resistivity.
rho = 0.0310× 3.30×10^-6/6.60
rho = 1.023×10^-7/6.60
rho = 1.551×10^-8 Ωm
Hence the resistivity of the material is 1.551×10^-8 Ωm
About a mil sience 2014-2015
Answer:
c. The steady-state value of the current depends on the resistance of the resistor.
Explanation:
Since all the components are connected in series, when the switch is at first open, current will not flow round the circuit. As current needs to flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery.
But the moment the switch is closed, at the initial time t = 0, the current flow through from the positive terminal of the battery through the resistor, inductor, and switch to the negative terminal of the battery. It then begins to increase at a rate that depends upon the value of the inductance of the inductor.
Answer:
The Arsenic has three electron-containing orbitals. The orbitals s, p and d.
Explanation:
Arsenic is an element with an atomic number equal of 33, it means that it has 33 electrons in its orbitals in the following way:








Therefore, the Arsenic has three electron-containing orbitals (s, p d).
Potential energy = mgh
Potential energy = 10 x 9.8 x 1.3
Potential energy = 127.4 J