Answer:
No
Explanation:
The force of tension exerted by the string on the rock acts as centripetal force, so its direction is always towards the centre of the circle.
However, the direction of motion of the rock is always tangential to the circle: this means that the force is always perpendicular to the direction of motion of the rock.
As we know, the work done by a force on an object is

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the force and the displacement
In this situation, F and d are perpendicular, so
, therefore
and the work done is zero:

Speed = (acceleration) x (time)
Velocity = (speed) in (direction of the speed)
Speed = (-3 m/s²) x (5 s) = 15 m/s
Velocity =
(15 m/s) in the direction opposite to the direction you call positive.
Displacement = (distance between start-point and end-point)
in the direction from start-point to end-point.
Distance = (1/2) (acceleration) (time)²
Distance = (1/2) (3 m/s²) (5 s)²
= (1/2) (3 m/s²) (25 s²) = 37.5 meters
Displacement =
37.5 meters in the direction opposite to the direction you call positive.
True I hope this helps you out
Given:
Uniform distributed load with an intensity of W = 50 kN / m on an overhang beam.
We need to determine the maximum shear stress developed in the beam:
τ = F/A
Assuming the area of the beam is 100 m^2 with a length of 10 m.
τ = F/A
τ = W/l
τ = 50kN/m / 10 m
τ = 5kN/m^2
τ = 5000 N/ m^2<span />