1. Recall the vertical line equation.
2. Plug in the x that we know.
3. Write down the final equation
Pls mark me brainiest :)
Answer:
Choice b.
.
Step-by-step explanation:
The highest power of the variable
in this polynomial is
. In other words, this polynomial is quadratic.
It is thus possible to apply the quadratic formula to find the "roots" of this polynomial. (A root of a polynomial is a value of the variable that would set the polynomial to
.)
After finding these roots, it would be possible to factorize this polynomial using the Factor Theorem.
Apply the quadratic formula to find the two roots that would set this quadratic polynomial to
. The discriminant of this polynomial is
.
.
Similarly:
.
By the Factor Theorem, if
is a root of a polynomial, then
would be a factor of that polynomial. Note the minus sign between
and
.
- The root
corresponds to the factor
, which simplifies to
. - The root
corresponds to the factor
, which simplifies to
.
Verify that
indeed expands to the original polynomial:
.
Answer:
A
Step-by-step explanation:
A is the procedure
Refer to the diagram below
If we draw a line that connects the center of rotation to one of the points, say point N, and take this line as the 0° position, then we need three 'turn' of 90° to get to 270°.
Coordinate of N' (-3, 4)
Coordinate of M' (-9, 5)
1. -36 is less
2. .12
3. 3.36
I don’t use property’s but u know 8 is the identity property