Answer:
Part B: ![\displaystyle [1, 2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5B1%2C%202%5D)
Part A: Set both equation equal to each other by Substitution, since our <em>y-values</em> are already given to us.
Step-by-step explanation:
6x - 4 = 5x - 3
- 6x + 3 - 6x + 3
____________

Plug this coordinate back into the above equations to get the <em>y-coordinate</em><em> </em>of 2.
<em>y</em><em> </em><em>=</em><em> </em><em>mx</em><em> </em><em>+</em><em> </em><em>b</em><em> </em>[where<em> </em><em>b</em><em> </em>is the y-intercept and the rate of change (slope) is represented by <em>m</em>]
![\displaystyle y = 5x - 3; [0, -3]; 5 = m \\ y = 6x - 4; [0, -4]; 6 = m](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%205x%20-%203%3B%20%5B0%2C%20-3%5D%3B%205%20%3D%20m%20%5C%5C%20y%20%3D%206x%20-%204%3B%20%5B0%2C%20-4%5D%3B%206%20%3D%20m)
I am joyous to assist you at any time.
Answer:

Step-by-step explanation:
[1] 2x + y = -1
[2] x - 2y = -8 <------- given linear equations
Graphic Representation of the Equations : ----> given in attatchment
y + 2x = -1 -2y + x = -8 < ----- point where they connect is shown in graph
Solve by Substitution :
// Solve equation [2] for the variable x
[2] x = 2y - 8
// Plug this in for variable x in equation [1]
[1] 2•(2y-8) + y = -1
[1] 5y = 15
// Solve equation [1] for the variable y
[1] 5y = 15
[1] y = 3
// By now we know this much :
x = 2y-8
y = 3
// Use the y value to solve for x
x = 2(3)-8 = -2
Solution :
{x,y} = {-2,3}