Answer:
a) The severity index (SI) is 3047.749, b) The injured travels 0.345 meters during the collision.
Explanation:
a) The g-multiple of the acceleration, that is, a ratio of the person's acceleration to gravitational acceleration, is:


The time taken for the injured to accelerate to final speed is given by this formula under the assumption of constant acceleration:

Where:
- Initial speed, measured in meters per second.
- Final speed, measured in meter per second.
- Acceleration, measured in
.
- Time, measured in seconds.



Lastly, the severity index is now determined:



b) The initial and final speed of the injured are
and
, respectively. The travelled distance can be determined from this equation of motion:

Where
is the travelled distance, measured in meters.


.
Answer:
<em>Correct choice: b 4H</em>
Explanation:
<u>Conservation of the mechanical energy</u>
The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):
E = U + K
The GPE is calculated as:
U = mgh
And the kinetic energy is:

Where:
m = mass of the object
g = gravitational acceleration
h = height of the object
v = speed at which the object moves
When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

Since the energy is conserved, U1=U2
![\displaystyle mgH=\frac{1}{2}mv^2 \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%20%20%20%20%5Cqquad%5Cqquad%20%5B1%5D)
For the speed to be double, we need to drop the snowball from a height H', and:

Operating:
![\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%27%3D4%5Cfrac%7B1%7D%7B2%7Dm%28v%29%5E2%20%5Cqquad%5Cqquad%20%5B2%5D)
Dividing [2] by [1]

Simplifying:

Thus:
H' = 4H
Correct choice: b 4H
You would use answer 2O g/cm3
Answer:
The speed with which the man flies forward is 5.5 m/s
Explanation:
The mass of the man = 100 kg
The mass of the scooter = 10 kg
The speed with which the man was traveling on the scooter = 5 m/s
The speed of the scooter after it hits the rock = 0 m/s
Let v represent the speed with which the man flies forward
The formula for momentum, P, is P = Mass × Velocity
The conservation of linear momentum principle is, the total initial momentum = The total final momentum, therefore, we have;
The total initial momentum = (100 kg + 10 kg) × 5 m/s = 550 kg·m/s
The total final momentum = 100 kg × v + 10 kg × 0 m/s = 100 kg × v
When the momentum is conserved, we have;
550 kg·m/s = 100 kg × v
∴ v = 550 kg·m/s/(100 kg) = 5.5 m/s.
The speed with which the man flies forward = v = 5.5 m/s
Answer:
12°F
Explanation:
Calculation for how much subcooling is there in the condenser
Since the CONDENSING TEMPERATURE for 417.4 psig discharge pressure is 120 degrees (120°) which means that the amount of subcooling that is there in the condenser will be calculated using this formula
Amount of Condenser subcooling= Condensing Temperature discharge pressure -Condenser outlet temperature
Let plug in the formula
Amount of Condenser subcooling=120°-108f
Amount of Condenser subcooling=12°F
Therefore the amount of subcooling that is there in the condenser will be 12°F