Answer:
Fn: magnitude of the net force.
Fn=30.11N , oriented 75.3 ° clockwise from the -x axis
Explanation:
Components on the x-y axes of the 17 N force(F₁)
F₁x=17*cos48°= 11.38N
F₁y=17*sin48° = 12.63 N
Components on the x-y axes of the the second force(F₂)
F₂x= −19.0 N
F₂y= 16.5 N
Components on the x-y axes of the net force (Fn)
Fnx= F₁x +F₂x= 11.38N−19.0 N= -7.62 N
Fny= F₁y +F₂y= 12.63 N +16.5 N = 29.13 N
Magnitude of the net force.



Direction of the net force (β)

β=75.3°
Magnitude and direction of the net force
Fn= 30.11N , oriented 75.3 ° clockwise from the -x axis
In the attached graph we can observe the magnitude and direction of the net force
Answer:
1058.78 ft/sec
Explanation:
Horizontal Component of Velocity; This is the velocity of a body that act on the horizontal axis. I.e Velocity along x-axis
The horizontal velocity of a body can be calculated as shown below.\
Vh = Vcos∅.......................... Equation 1
Where Vh = horizontal component of the velocity, V = The velocity acting between the horizontal and the vertical axis, ∅ = Angle the velocity make with the horizontal.
Given: V = 1178 ft/sec, ∅ = 26°
Substitute into equation 1
Vh = 1178cos26
Vh = 1178(0.8988)
Vh = 1058.78 ft/sec
Hence the horizontal component of the velocity = 1058.78 ft/sec
Answer: c. they will hit the ground at the same time
Explanation:
The volume of both objects is almost the same, so the force of friction will be the same in each one, so we can discard it.
Now, when yo drop an object, the acceleration of the object is always g = 9.8m/s^2 downwards, independent of the mass of the object.
So if you drop two objects with the same volume but different mass, because the acceleration is the same for both of them, they will hit the ground at the same time, this means that the density of the object has no impact in how much time the object needs to reach the floor.
So the correct option is c
In an uniform circular motion, the direction of the net force on the object is radially inward, passing through the center of the circle.