Answer:
1:04-1:10 hours
Explanation:
You'll need a <em>Recreational dive planner</em> table, I annexed a copy, now you'll follow the next steps:
- In the first part of your table, you'll look for the distance row (in feet) of your first dive, for this specific exercise you'll find 60, once you locate it you'll go down that column until you reach the time you'll dive, in this case, 45 (minutes) or the closest value (47).
- You'll check and keep the letter in that 47 row (S) for future use.
- Now you have to go to the second part of your table and look for the distance column, in feet, of your second dive. We find 60 and then going right in the blue row, we'll look for the time (35) or its closest value (36).
- Finally, we have to check the letter for 36 minutes (F) and we'll make it met with the letter S in the first portion of your tables. This will give us an interval of time, 1:04-1:10 in this case.
I hope you find this information useful and interesting! Good luck!
Answer: Option A: The number of trees sampled.
The accuracy can be understood as how close is the measured value to the true value. The aim is to monitor the population size of the insect pest in a 50 square kilometer. Random trees are selected, and number of eggs and larvae are counted. So, the measured value would be closer to actual value when the number of trees sampled are increased. More the number of trees sampled, less would be the chances of error and the accuracy of the estimate would increase.
Nope, I disagree with the former answer. The answer is definitely Z. <u>W area</u> (boxed with red outline) is represented as the hot reservoir while <u>Z area</u> is the cold reservoir (boxed with blue outline). X area is the heat engine itself and Y area is the work produced from thermal energy from hot reservoir. Typically, all heat engines lose some heat to the environment (based from the second law of thermodynamics) that is symbolically illustrated by the lost energy in the cold reservoir. This lost thermal energy is basically the unusable thermal energy. The higher thermal energy lost, the less efficient your heat engine is.
We assign the variables: T as tension and x the angle of the string
The <span>centripetal acceleration is expressed as v²/r=4.87²/0.9 and (0.163x4.87²)/0.9 = </span><span>T+0.163gcosx, giving T=(0.163x4.87²)/0.9 – 0.163x9.8cosx.
</span>
<span>(1)At the bottom of the circle x=π and T=(0.163x4.87²)/0.9 – .163*9.8cosπ=5.893N. </span>
<span>(2)Here x=π/2 and T=(0.163x4.87²)/0.9 – 0.163x9.8cosπ/2=4.295N. </span>
<span>(3)Here x=0 and T=(0.163x4.87²)/0.9 – 0.163x9.8cos0=2.698N. </span>
<span>(4)We have T=(0.163v²)/0.9 – 0.163x9.8cosx.
</span><span>This minimum v is obtained when T=0 </span><span>and v verifies (0.163xv²)/0.9 – 0.163x9.8=0, resulting to v=2.970 m/s.</span>
Magnetic domain structure is responsible for the magnetic behavior of ferromagnetic materials like iron, nickel, cobalt and their alloys, and ferrimagnetic materials like ferrite. ... Magnetic domains form in materials which have magnetic ordering; that is, their dipoles spontaneously align due to the exchange interaction.