Answer:
Absolute zero is where the particles/molecules are not moving at all, meaning that there is no heat.
This means that the answer is:
1. All particles are moving and this movement allows us to measure the thermal energy of an object or substance. If the particles were able to completely stop moving this would be called reaching absolute zero.
Hi I believe it is b. sorry if this isnt found to be helpful.
Answer:
Spring Constant = 279.58 N/m
Explanation:
We are given;
Mass; m = 2.05 x 10^(-2) kg = 0.0205 kg
Distance of compression; x = 8.01 × 10^(-2) m = 0.0801 m
Maximum height; h = 4.46 m
The formula for the energy in the spring is given by;
E = ½kx²
where:
k is the spring constant
x is the distance the spring is compressed.
Now, this energy of the spring will be equal to the energy of the pellet at its highest point. Energy of pallet = mgh So;
½kx² = mgh
Plugging in the relevant values, we have;
½ * k * 0.0801² = 0.0205 * 9.81 * 4.46
0.003208005k = 0.8969
k = 0.8969/0.003208005
k = 279.58 N/m
Answer:
<h2>sound :</h2>
a longitudinal wave the particle displacement is parallel to the direction of wave propagation. The animation at right shows a one-dimensional longitudinal plane wave propagating down a tube. The particles do not move down the tube with the wave; they simply oscillate back and forth about their individual equilibrium positions. Pick a single particle and watch its motion. The wave is seen as the motion of the compressed region (ie, it is a pressure wave), which moves from left to right.
The second animation at right shows the difference between the oscillatory motion of individual particles and the propagation of the wave through the medium. The animation also identifies the regions of compression and rarefaction.
The P waves (Primary waves) in an earthquake are examples of Longitudinal waves. The P waves travel with the fastest velocity and are the first to arrive.
Explanation:
<h2>earthquakes :</h2>
In a transverse wave the particle displacement is perpendicular to the direction of wave propagation. The animation below shows a one-dimensional transverse plane wave propagating from left to right. The particles do not move along with the wave; they simply oscillate up and down about their individual equilibrium positions as the wave passes by. Pick a single particle and watch its motion.
The S waves (Secondary waves) in an earthquake are examples of Transverse waves. S waves propagate with a velocity slower than P waves, arriving several seconds later.
<h2>oceans :</h2>
Water waves are an example of waves that involve a combination of both longitudinal and transverse motions. As a wave travels through the waver, the particles travel in clockwise circles. The radius of the circles decreases as the depth into the water increases. The animation at right shows a water wave travelling from left to right in a region where the depth of the water is greater than the wavelength of the waves. I have identified two particles in orange to show that each particle indeed travels in a clockwise circle as the wave passes.
There is no accurate description on the list you provided.