..... It would possibly she eenejjsjejeej 1.4
Answer:
All electrons are negative(-) charged
Let us say that x is the cut that we will make on the
sides to make a box, therefore the new dimensions are:
l = 15 – 2x
w = 8 – 2x
It is 2x since we cut on two sides.
We know that volume is:
V = l w x
V = (15 – 2x) (8 – 2x) x
V = 120x – 30x^2 – 16x^2 + 4x^3
V = 120x – 46x^2 + 4x^3
Taking the 1st derivative:
dV/dx = 120 – 92x + 12x^2
Set dV/dx = 0 to get maxima:
120 – 92x + 12x^2 = 0
Divide by 12:
x^2 – (92/12)x + 10 = 0
(x – (92/24))^2 = -10 + (92/24)^2
x - 92/24 = ±2.17
x = 1.66, 6
We cannot have x = 6 because that will make our w
negative, so:
x = 1.66 inches
So the largest volume is:
V = 120x – 46x^2 + 4x^3
V = 120(1.66) – 46(1.66)^2 + 4(1.66)^3
V = 90.74 cubic inches
An example of a hypothesis for an experiment might be: “A basketball will bounce higher if there is more air it”
Step one would be to make an observation... “hey, my b-ball doesn’t have much air in it, and it isn’t bouncing ver high”
Step two is to form your hypothesis: “A basketball will bounce higher if there is more air it”
Step three is to test your hypothesis: maybe you want to drop the ball from a certain height, deflate it by some amount and then drop it from that same height again, and record how high the ball bounced each time.
Here the independent variable is how much air is in the basketball (what you want to change) and the dependent variable is how high the b-ball will bounce (what will change as a result of the independent variable)
Step four is to record all of your results and step five is to analyze that data. Does your data support your hypothesis? Why or why not?
You should only test one variable at a time because it is easier to tell why the results are how they are; you only have one cause.
Hope this helps!
Answer:
The upper limit on the flow rate = 39.46 ft³/hr
Explanation:
Using Ergun Equation to calculate the pressure drop across packed bed;
we have:

where;
L = length of the bed
= viscosity
U = superficial velocity
= void fraction
dp = equivalent spherical diameter of bed material (m)
= liquid density (kg/m³)
However, since U ∝ Q and all parameters are constant ; we can write our equation to be :
ΔP = AQ + BQ²
where;
ΔP = pressure drop
Q = flow rate
Given that:
9.6 = A12 + B12²
Then
12A + 144B = 9.6 -------------- equation (1)
24A + 576B = 24.1 --------------- equation (2)
Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So
288 B = 4.9
B = 0.017014
From equation (1)
12A + 144B = 9.6
12A + 144(0.017014) = 9.6
12 A = 9.6 - 144(0.017014)

A = 0.5958
Thus;
ΔP = AQ + BQ²
Given that ΔP = 50 psi
Then
50 = 0.5958 Q + 0.017014 Q²
Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;
Q² + 35.02Q - 2938.8 = 0
Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;
Q = 39.46 ft³/hr