C.
Willy and Bill rode an equal distance on their bikes
Hope it help! :D
AE = AC = 4
m<CAB = 60 (equilateral triangle)
m<CAE = 90 (square)
m<BAE = 150 (= 60 + 90)
Triangle BAE is isosceles since AB = AE;
therefore, m<AEB = m<ABE.
m<AEB + m<ABE + m<BAE = 180
m<AEB + m< ABE + 150 = 180
m<AEB + m<AEB = 30
m<AEB = 15
In triangle ABE, we know AE = AB = 4;
we also know m<BAE = 150, and m<AEB = 15.
We can use the law of sines to find BE.
BE/(sin 150) = 4/(sin 15)
BE = (4 sin 150)/(sin 15)
BE = 7.727
Hello,
2x^3+14x^2+6x+42=2x^2(x+7)+6(x+7)
=(x+7)(2x²+6)
=2(x+7)(x²+3) in IR.
or In C 2(x+7)(x-i√3)(x+i√3)
A. 6 + 6 = 12
b. 7 + 8 = 15
c. 0 + 0 = 0
d. 5 + -5 = -10