Answer:131/12
Step-by-step explanation:
-7 2/3 -5 1/2 +8 3/4 = 23/3 - 11/2 + 35/4 = 92/12 -66/12 +105/12 = 131/12
Answer:
Step-by-step explanation:
Combine like terms. Like terms have same variable with same power
a) (2xy + 4x) + (15xy - 5x) = <u>2xy + 15xy</u> +<u> 4x - 5x</u>
= 17xy - x
b) (6a + 4b² - 3) + (3b² - 5) = 6a + <u>4b² + 3b²</u> <u>- 3 - 5 </u>
= 6a + 7b² - 8
c) (4x³ - 3x² +4x) + (8x² - 5x ) = 4x³ <u>- 3x² + 8x²</u> <u>+ 4x - 5x</u>
= 4x³ + 5x² - x
d) (7b - 6a + 9y) - (12b + 5a - 2y) =
In subtraction, add the additive inverse of (12b + 5a - 2y)
additive inverse = - 12b - 5a + 2y
(7b - 6a + 9y) - (12b + 5a - 2y) = 7b - 6a + 9y -12b -5a + 2y
= 7b - 12b -6a - 5a + 9y + 2y
= -5b - 11a + 11y
e) (2x² + 7x - 2 + 9y) - (13x + 4x² + 5 - 6y)
Additive inverse of 13x + 4x² + 5 - 6y = -13x + 4x² - 5 + 6y
(2x² + 7x - 2 + 9y) - (13x + 4x² + 5 - 6y)= 2x² + 7x - 2 + 9y -13x - 4x² -5 +6y
= 2x² - 4x² + 7x -13x -2 - 5 + 9y + 6y
= -2x² - 6x - 7 + 15y
Find the general solution by separating the variables then integrating:
dy / dx = cosx℮^(y + sinx)
dy / dx = cosx℮ʸ℮^(sinx)
℮^(-y) dy = cosx℮^(sinx) dx
∫ ℮^(-y) dy = ∫ cosx℮^(sinx) dx
-℮^(-y) = ℮^(sinx) + C
℮^(-y) = C - ℮^(sinx)
-y = ln[C - ℮^(sinx)]
y = -ln[C - ℮^(sinx)]
Find the particular solution by solving for the constant:
When x = 0, y = 0
-ln(C - 1) = 0
ln(C - 1) = 0
C - 1 = 1
C = 2
<span>y = -ln[2 - ℮^(sinx)]
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!</span>