Hello.
To get the volume 5184 in3 you can use the dimension 18in x 24in x 12in.
First, you should draw a picture of your shipping container. It is a rectangular prism that is 5 by 12 by 4.
Next, let's look at the boxes of apples that will go into the box. The volume has to be 5184 in^3. If we divide it by 12 and 12, the answer is 3. Therefore, we could make a box that is 1 foot by 1 foot by 3 feet.
Those boxes would be stack on the base without any left over space. Now, just figure out how many would go on the next rows. They would be able to stand up and down.
Have a nice day.
Y = 5x + 4
Gradient = slope = 5
(0,4) = y - intercept
Answer:
Answer is <em>900</em>.
Step-by-step explanation:
To find:
Increase #500 in the ratio 16:10
Solution:
<em>New Number: Old Number = 16:10</em>
We are given the old number as 500.
Let the new number after increase = ![x](https://tex.z-dn.net/?f=x)
Now, using the above ratio:
<em />
<em>: </em>500<em> = </em>16:10
![\dfrac{x}{500} = \dfrac{16}{10}\\\Rightarrow x = 500 \times \dfrac{16}{10}\\\Rightarrow x = 50 \times 16\\\Rightarrow x = 900](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%7D%7B500%7D%20%3D%20%5Cdfrac%7B16%7D%7B10%7D%5C%5C%5CRightarrow%20x%20%3D%20500%20%5Ctimes%20%5Cdfrac%7B16%7D%7B10%7D%5C%5C%5CRightarrow%20x%20%3D%2050%20%5Ctimes%2016%5C%5C%5CRightarrow%20x%20%3D%20900)
Therefore, the increased value of 500 in the ration 16:10 is <em>900</em>.
The trigonometric ratios show that the angle FHE is 48.59°.
<h3>RIGHT TRIANGLE</h3>
A triangle is classified as a right triangle when it presents one of your angles equal to 90º. The greatest side of a right triangle is called hypotenuse. And, the other two sides are called cathetus or legs.
The math tools applied for finding angles or sides in a right triangle are the trigonometric ratios or the Pythagorean Theorem.
The Pythagorean Theorem says:
. And the main trigonometric ratios are:
![sin(\alpha) =\frac{opposite \;leg }{hypotenuse} \\ \\ cos(\alpha) =\frac{adjacent\;leg }{hypotenuse} \\ \\ tan(\alpha) =\frac{sin(\alpha )}{cos(\alpha )}= \frac{opposite \;leg }{adjacent\;leg } \\ \\](https://tex.z-dn.net/?f=sin%28%5Calpha%29%20%3D%5Cfrac%7Bopposite%20%5C%3Bleg%20%7D%7Bhypotenuse%7D%20%5C%5C%20%5C%5C%20cos%28%5Calpha%29%20%3D%5Cfrac%7Badjacent%5C%3Bleg%20%7D%7Bhypotenuse%7D%20%5C%5C%20%5C%5C%20tan%28%5Calpha%29%20%3D%5Cfrac%7Bsin%28%5Calpha%20%29%7D%7Bcos%28%5Calpha%20%29%7D%3D%20%5Cfrac%7Bopposite%20%5C%3Bleg%20%7D%7Badjacent%5C%3Bleg%20%7D%20%5C%5C%20%5C%5C)
It is important to remember that the sum of internal angles for any triangle is 180°.
From the question, it is possible to see 2 right triangles (HGF and FHE).
You can find the hypotenuse of the triangle HGF from the trigonometric ratio: sen Θ
![sin45=\frac{opposite\; leg }{hypotenuse} =\frac{\sqrt8}{hypotenuse}\\ \\ \frac{\sqrt{2} }{2} =\frac{\sqrt{8} }{hypotenuse} \\ \\ \sqrt{2}*hypotenuse=2\sqrt{8} \\ \\ hypotenuse=\frac{2\sqrt{8} }{\sqrt{2}} =2\sqrt{4} =2*2=4](https://tex.z-dn.net/?f=sin45%3D%5Cfrac%7Bopposite%5C%3B%20leg%20%7D%7Bhypotenuse%7D%20%3D%5Cfrac%7B%5Csqrt8%7D%7Bhypotenuse%7D%5C%5C%20%5C%5C%20%5Cfrac%7B%5Csqrt%7B2%7D%20%7D%7B2%7D%20%3D%5Cfrac%7B%5Csqrt%7B8%7D%20%7D%7Bhypotenuse%7D%20%5C%5C%20%5C%5C%20%5Csqrt%7B2%7D%2Ahypotenuse%3D2%5Csqrt%7B8%7D%20%5C%5C%20%5C%5C%20hypotenuse%3D%5Cfrac%7B2%5Csqrt%7B8%7D%20%7D%7B%5Csqrt%7B2%7D%7D%20%3D2%5Csqrt%7B4%7D%20%3D2%2A2%3D4)
The hypotenuse of triangle HGF is one of legs for the triangle FHE. The, you can find the angle FHE from the trigonometric ratio: tan β. Thus,
![sin \beta =\frac{opposite\; leg }{adjacent\; leg} =\frac{3}{4}\\ \\ sin \beta=\frac{3}{4}=0.84806\\ \\ arcsin\beta =48.59^{\circ \:}](https://tex.z-dn.net/?f=sin%20%5Cbeta%20%3D%5Cfrac%7Bopposite%5C%3B%20leg%20%7D%7Badjacent%5C%3B%20leg%7D%20%3D%5Cfrac%7B3%7D%7B4%7D%5C%5C%20%5C%5C%20sin%20%5Cbeta%3D%5Cfrac%7B3%7D%7B4%7D%3D0.84806%5C%5C%20%5C%5C%20arcsin%5Cbeta%20%3D48.59%5E%7B%5Ccirc%20%5C%3A%7D)
Learn more about trigonometric ratios here:
brainly.com/question/11967894
#SPJ1
When factoring an expression, we need to identify the Greatest Common Factor of the expression (GCF). By definition, GCF is the product of prime factors involved with its Lowest Exponent.
We need to divide each term by the GCF to get the expression inside the parenthesis.
![30a^6-24a^2\\ GCF\; is \; 6a^2\\ \\ 30a^6-24a^2=6a^2(\frac{3a^6}{6a^2} -\frac{24a^2}{6a^2} )=6a^2(5a^4-4)\\ ---------------------\\ \\ 16a^5-20a^3\\ GCF \; is \; 4a^3\\ \\ 16a^5-20a^3=4a^3(\frac{16a^5}{4a^3} -\frac{20a^3}{4a^3})=4a^3(4a^2-5) \\ ---------------------\\ \\ 12a^3+8a\\ GCF \; is \; 4a\\ \\ 12a^3+8a=4a(\frac{12a^3}{4a}+\frac{8a}{4a})=4a(3a^2+2)\\ ---------------------\\ 24a^4+18\\GCF \; is \; 6\\\\24a^4+18=6(\frac{24a^4}{6} +\frac{18}{6})=6(4a^4+3) \\ ---------------------](https://tex.z-dn.net/?f=%2030a%5E6-24a%5E2%5C%5C%20GCF%5C%3B%20is%20%5C%3B%206a%5E2%5C%5C%20%5C%5C%2030a%5E6-24a%5E2%3D6a%5E2%28%5Cfrac%7B3a%5E6%7D%7B6a%5E2%7D%20-%5Cfrac%7B24a%5E2%7D%7B6a%5E2%7D%20%29%3D6a%5E2%285a%5E4-4%29%5C%5C%20---------------------%5C%5C%20%5C%5C%2016a%5E5-20a%5E3%5C%5C%20GCF%20%5C%3B%20is%20%5C%3B%204a%5E3%5C%5C%20%5C%5C%2016a%5E5-20a%5E3%3D4a%5E3%28%5Cfrac%7B16a%5E5%7D%7B4a%5E3%7D%20-%5Cfrac%7B20a%5E3%7D%7B4a%5E3%7D%29%3D4a%5E3%284a%5E2-5%29%20%5C%5C%20---------------------%5C%5C%20%5C%5C%2012a%5E3%2B8a%5C%5C%20GCF%20%5C%3B%20is%20%5C%3B%204a%5C%5C%20%5C%5C%2012a%5E3%2B8a%3D4a%28%5Cfrac%7B12a%5E3%7D%7B4a%7D%2B%5Cfrac%7B8a%7D%7B4a%7D%29%3D4a%283a%5E2%2B2%29%5C%5C%20%20%20---------------------%5C%5C%2024a%5E4%2B18%5C%5CGCF%20%5C%3B%20is%20%5C%3B%206%5C%5C%5C%5C24a%5E4%2B18%3D6%28%5Cfrac%7B24a%5E4%7D%7B6%7D%20%2B%5Cfrac%7B18%7D%7B6%7D%29%3D6%284a%5E4%2B3%29%20%5C%5C%20%20%20%20---------------------%20)
Conclusion:
From above we can conclude that the below expressions are factored completely
![16a^5-20a^3=4a^3(4a^2-5)\\ \\ 24a^4+18=6(4a^4+3)](https://tex.z-dn.net/?f=%2016a%5E5-20a%5E3%3D4a%5E3%284a%5E2-5%29%5C%5C%20%5C%5C%2024a%5E4%2B18%3D6%284a%5E4%2B3%29%20)