Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)
Hi i’m answering on here so i can ask someone something through the messages bc i haven’t answered enough questions
H = x, L = 1.5 x;
L + W + H = 6
x + 1.5 x + W = 6
W = 6 - 2.5 x
Dimensions of the camera in terms of x:
x, 1.5 x, 6 - 2.5 x.
V = L x W x H
V = x * 1.5 x * ( 6 - 2.5 x ) = 9 x² - 3.75 x³
V ` = 18 x - 11.25 x² ( V max is when V` = 0 )
18 x - 11.25 x² = 0
x ( 18 - 11.25 x ) = 0
11.25 x = 18
x = 18 : 11.25
x = 1.6
The dimensions are:
L = 2.4
W = 2.0
H = 1.6
You need to post an actual question on her to be answered