Answer:
Step-by-step explanation:
nth term = a +(n-1)d
a3 = 116 ; a + 2d = 116 ---------(i)
a7 = 180; a + 6d = 180 -------(ii)
multiply (ii) by -1. so a will be eliminated
a + 2d = 116 ---------(i)
(ii)*-1 <u>-a - 6d = -180</u> -------(ii) { Now add the two equations}
- 4d = -64
d = -64/-4
d = 16
Plug in the value of d in equation (i),
a + 2*16 = 116
a + 32 = 116
a = 116 - 32
a = 84
12th term = 84 + 11* 16 = 84 + 176 = 260
Answer:
BC=3
Step-by-step explanation:
<em>We </em><em>can </em><em>solve </em><em>this </em><em>by </em><em>eliminating</em><em> </em><em>given </em><em>detail </em><em>of </em><em>A.</em>
AC=13 , AB=10
<u>To </u><u>find </u><u>BC,</u><u> </u><u>We </u><u>minus </u><u>A</u><u>C</u><u> </u><u>With </u><u>AB</u>
BC= AC-AB
<u>BC=3</u>
3 Is the final answer
I hope this helps, dont hesitate to ask for any question.
Mark me as brainliest is appreciated.Tq!!
Answer:
50,000 + 3,000 + 200 + 70 + 4
Step-by-step explanation:
Expand. Set all non-zero digits by itself:
53,274 = 50,000 + 3,000 + 200 + 70 + 4
Remember to fill in 0 for all digits. They must keep their value.
~