1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
neonofarm [45]
3 years ago
11

Which of these is an example of physical change?

Mathematics
1 answer:
Wewaii [24]3 years ago
8 0

a digesting bread  because you're not changing anything about  the you're just eating the bread and eating the bread has no change

You might be interested in
A water pipe is 4 7/12 feet beneath the surface of the road. What is the elevation of the pipe, in feet, expressed as a decimal?
Andrej [43]
The answer is C. U just have to divide 7 and 12 to get your decimal
8 0
3 years ago
Help me with this please ASAP
Natasha2012 [34]

Answer:

Hi there your answer is 8x^{6}

Step-by-step explanation:

Hi... You have to muliply 4 and 2 which will equal to 8

Then, if you know the exponent rule for the Product Rule or don't I'll still give it you here it is

x^{m}*x^{n}=x^{m+n}

In this case we will be adding 3 and 3 which will equal to 6

Which your answer will be

8x^{6}

4 0
3 years ago
Expert Answer Please !Decide If SSS,ASA,AAS,SAS,HL, or None
ValentinkaMS [17]
Sss , ik this because all u have to do is read the question , self explanatory
3 0
3 years ago
Which fractions are equivalent to 4/6? Select all that apply.
kiruha [24]

Answer:

2/3

8/12

Step-by-step explanation:

You just divide each numerator 4 (5÷4) and each denominator by 6 (8÷6) and see if the numbers are the same.

5÷4=1.25

8÷6=1.33

They are not equivalent, so 5/8 is not correct

2÷4=0.5

3÷6=0.5

They are equivalent, so 2/3 is correct

<u>Please</u><u> give</u><u> brainliest</u><u> if</u><u> I</u><u> helped</u><u>!</u><u> </u><u>:</u><u>)</u>

4 0
3 years ago
Solve the initial-value problem using the method of undetermined coefficients.
andrey2020 [161]

First check the characteristic solution. The characteristic equation to this DE is

<em>r</em> ² - <em>r</em> = <em>r</em> (<em>r</em> - 1) = 0

with roots <em>r</em> = 0 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁ </em>exp(0<em>x</em>) + <em>C₂</em> exp(1<em>x</em>)

<em>y</em> (char.) = <em>C₁</em> + <em>C₂</em> exp(<em>x</em>)

For the particular solution, we try the <em>ansatz</em>

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) exp(<em>x</em>)

but exp(<em>x</em>) is already accounted for in the second term of <em>y</em> (char.), so we multiply each term here by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> ² + <em>bx</em>) exp(<em>x</em>)

Differentiate this twice and substitute the derivatives into the DE.

<em>y'</em> (part.) = (2<em>ax</em> + <em>b</em>) exp(<em>x</em>) + (<em>ax</em> ² + <em>bx</em>) exp(<em>x</em>)

… = (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) exp(<em>x</em>)

<em>y''</em> (part.) = (2<em>ax</em> + 2<em>a</em> + <em>b</em>) exp(<em>x</em>) + (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) exp(<em>x</em>)

… = (<em>ax</em> ² + (4<em>a</em> + <em>b</em>)<em>x</em> + 2<em>a</em> + 2<em>b</em>) exp(<em>x</em>)

(<em>ax</em> ² + (4<em>a</em> + <em>b</em>)<em>x</em> + 2<em>a</em> + 2<em>b</em>) exp(<em>x</em>) - (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) exp(<em>x</em>)

= <em>x</em> exp(<em>x</em>)

The factor of exp(<em>x</em>) on both sides is never zero, so we can cancel them:

(<em>ax</em> ² + (4<em>a</em> + <em>b</em>)<em>x</em> + 2<em>a</em> + 2<em>b</em>) - (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) = <em>x</em>

Collect all the terms on the left side to reduce it to

2<em>ax</em> + 2<em>a</em> + <em>b</em> = <em>x</em>

Matching coefficients gives the system

2<em>a</em> = 1

2<em>a</em> + <em>b</em> = 0

and solving this yields

<em>a</em> = 1/2, <em>b</em> = -1

Then the general solution to this DE is

<em>y(x)</em> = <em>C₁</em> + <em>C₂</em> exp(<em>x</em>) + (1/2 <em>x</em> ² - <em>x</em>) exp(<em>x</em>)

For the given initial conditions, we have

<em>y</em> (0) = <em>C₁</em> + <em>C₂</em> = 6

<em>y'</em> (0) = <em>C₂</em> - 1 = 5

and solving for the constants here gives

<em>C₁</em> = 0, <em>C₂</em> = 6

so that the particular solution to the IVP is

<em>y(x)</em> = 6 exp(<em>x</em>) + (1/2 <em>x</em> ² - <em>x</em>) exp(<em>x</em>)

3 0
3 years ago
Other questions:
  • 5x ( 7 - 2 ) + ( 8 + 1 )
    9·2 answers
  • Combine like terms to simplify the expression below:<br> 14x - (2x -y) -y STEP BY STEP PLEASE
    12·2 answers
  • A=7/25<br> B=7/24<br> C=24/25<br> D=24/7
    13·1 answer
  • Find one rational and one irrational no. between 3 and 5.
    10·1 answer
  • Simplify the expression: (3 + 9) ÷ 3 + 6 ∙ 2x
    10·1 answer
  • What number line represents the solution for the inequality -1\2x&gt;4
    9·1 answer
  • HELLPPP GRADESSS AHAHHAH [brainly
    13·2 answers
  • Multiplos comunes de 8y12​
    12·1 answer
  • Match the event with the most appropriate probability word: The roll of a normal fair dice will show a 7.
    10·1 answer
  • What is the product?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!